Internal wave signature detection and characterization from SAR images

被引:0
|
作者
Ródenas, JA [1 ]
Garello, R [1 ]
机构
[1] ENST Bretagne, Brest, France
来源
PROCEEDINGS OF THE NINTH (1999) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 1999 | 1999年
关键词
coastline detection; internal waves; multiscale methods; CWT; wavelet maxima and minima;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper addresses the problem of the detection and characterization of oceanic internal wave (IW) packets. We describe an efficient method for automatic extraction of IW features present in ocean SAR images. The utility of wavelet analysis as a tool for IW detection is first examined using the 2-D wavelet transform (WT) based on the multiscale edge detection method. We show that the evolution of local maxima of the 2-D WT across scales characterize the local shape of these quasi-linear periodic structures. Then, the Continuous Wavelet Transform (CWT) is employed in a scale-space analysis of SAR image profiles to locate and characterize the local scaring properties of the IW packet crests. The parameters of the IW crests are caracterized and estimated using the minima lines given by the Wavelet Transform Modulus Minima (WTMM) method. We show that wavelet analysis provides a new strategy for examinig IW signatures and offers the flexibility which results from the introduction of well-suited basis functions. Results from this study illustrate that wavelet transform methods can be excellent tools to automatically detect and extract IW packet parameters from SAR images against background noise and IW lookalikes.
引用
收藏
页码:199 / 206
页数:4
相关论文
共 50 条
  • [21] A LEVEL SET BASED METHOD FOR LAND MASKING IN SHIP DETECTION USING SAR IMAGES
    Wang, Ziwei
    Yang, Wei
    Chen, Jie
    Li, Chunsheng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3888 - 3891
  • [22] Coastline Detection with Gaofen-3 SAR Images Using an Improved FCM Method
    An, Meng
    Sun, Qian
    Hu, Jun
    Tang, Yuqi
    Zhu, Ziwei
    SENSORS, 2018, 18 (06)
  • [23] Coastline extraction from SAR images and a method for the evaluation of the coastline precision
    Dellepiane, S
    De Laurentiis, R
    Giordano, F
    PATTERN RECOGNITION LETTERS, 2004, 25 (13) : 1461 - 1470
  • [24] Automatic Detection of Internal Waves on Satellite Images and Estimates of the Mixed Layer Density
    Aleksanin, A. I.
    Kim, V.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2019, 55 (09) : 1098 - 1105
  • [25] A Fast Internal Wave Detection Method Based on PCANet for Ocean Monitoring
    Wang, Shengke
    Dong, Qinghong
    Duan, Lianghua
    Sun, Yujuan
    Jian, Muwei
    Li, Jianzhong
    Dong, Junyu
    JOURNAL OF INTELLIGENT SYSTEMS, 2019, 28 (01) : 103 - 113
  • [26] Airborne lidar detection and characterization of internal waves in a shallow fjord
    Churnside, James H.
    Marchbanks, Richard D.
    Lee, Jennifer H.
    Shaw, Joseph A.
    Weidemann, Alan
    Donaghay, Percy L.
    JOURNAL OF APPLIED REMOTE SENSING, 2012, 6
  • [27] Experiments on nonlinear harmonic wave generation from colliding internal wave beams
    Smith, S.
    Crockett, J.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2014, 54 : 93 - 101
  • [28] A turbulent patch arising from a breaking internal wave
    Yakovenko, Sergey N.
    Thomas, T. Glyn
    Castro, Ian P.
    JOURNAL OF FLUID MECHANICS, 2011, 677 : 103 - 133
  • [29] Internal Solitary Waves in the Andaman Sea: New Insights from SAR Imagery
    Magalhaes, Jorge M.
    da Silva, Jose C. B.
    REMOTE SENSING, 2018, 10 (06)
  • [30] Automatic Detection of Internal Waves on Satellite Images and Estimates of the Mixed Layer Density
    A. I. Aleksanin
    V. Kim
    Izvestiya, Atmospheric and Oceanic Physics, 2019, 55 : 1098 - 1105