PRUNED HURWITZ NUMBERS

被引:5
作者
Do, Norman [1 ]
Norbury, Paul [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Hurwitz numbers; fatgraphs; topological recursion; COUNTING LATTICE POINTS; MODULI SPACE; INTERSECTION THEORY; SPECTRAL CURVE; POLYNOMIALS; INVARIANTS; RECURSION;
D O I
10.1090/tran/7021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simple Hurwitz numbers count branched covers of the Riemann sphere and are well-studied in the literature. We define a new enumeration that restricts the count to branched covers satisfying an additional constraint. The resulting pruned Hurwitz numbers determine their simple counterparts, but have the advantage of satisfying simpler recursion relations and obeying simpler formulae. As an application of pruned Hurwitz numbers, we obtain a new proof of the Witten-Kontsevich theorem. Furthermore, we apply the idea of defining useful restricted enumerations to orbifold Hurwitz numbers and Belyi Hurwitz numbers.
引用
收藏
页码:3053 / 3084
页数:32
相关论文
共 50 条
[41]   Gromov-Witten theory, Hurwitz numbers, and Matrix models [J].
Okounkov, A. ;
Pandharipande, R. .
PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 :325-414
[42]   Equivalence of ELSV and Bouchard-Mario conjectures for -spin Hurwitz numbers [J].
Shadrin, S. ;
Spitz, L. ;
Zvonkine, D. .
MATHEMATISCHE ANNALEN, 2015, 361 (3-4) :611-645
[43]   Polynomiality of monotone Hurwitz numbers in higher genera [J].
Goulden, I. P. ;
Guay-Paquet, Mathieu ;
Novak, Jonathan .
ADVANCES IN MATHEMATICS, 2013, 238 :1-23
[44]   Weighted Hurwitz numbers and topological recursion: An overview [J].
Alexandrov, A. ;
Chapuy, G. ;
Eynard, B. ;
Harnad, J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[45]   Jacobi Ensemble, Hurwitz Numbers and Wilson Polynomials [J].
Gisonni, Massimo ;
Grava, Tamara ;
Ruzza, Giulio .
LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (03)
[46]   On the lower bounds for real double Hurwitz numbers [J].
Ding, Yanqiao .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (02) :525-546
[47]   Asymptotics for real monotone double Hurwitz numbers [J].
Ding, Yanqiao ;
He, Qinhao .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
[48]   Towards the topological recursion for double Hurwitz numbers [J].
Do, Norman ;
Karev, Maksim .
TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 :151-178
[49]   Hurwitz numbers and integrable hierarchy of Volterra type [J].
Takasaki, Kanehisa .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (43)
[50]   Generalized string equations for double Hurwitz numbers [J].
Takasaki, Kanehisa .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) :1135-1156