PRUNED HURWITZ NUMBERS

被引:5
作者
Do, Norman [1 ]
Norbury, Paul [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Hurwitz numbers; fatgraphs; topological recursion; COUNTING LATTICE POINTS; MODULI SPACE; INTERSECTION THEORY; SPECTRAL CURVE; POLYNOMIALS; INVARIANTS; RECURSION;
D O I
10.1090/tran/7021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simple Hurwitz numbers count branched covers of the Riemann sphere and are well-studied in the literature. We define a new enumeration that restricts the count to branched covers satisfying an additional constraint. The resulting pruned Hurwitz numbers determine their simple counterparts, but have the advantage of satisfying simpler recursion relations and obeying simpler formulae. As an application of pruned Hurwitz numbers, we obtain a new proof of the Witten-Kontsevich theorem. Furthermore, we apply the idea of defining useful restricted enumerations to orbifold Hurwitz numbers and Belyi Hurwitz numbers.
引用
收藏
页码:3053 / 3084
页数:32
相关论文
共 50 条
[31]   On ELSV-type formulae, Hurwitz numbers and topological recursion [J].
Lewanski, D. .
TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 :517-532
[32]   Quantum curves for simple Hurwitz numbers of an arbitrary base curve [J].
Liu, Xiaojun ;
Mulase, Motohico ;
Sorkin, Adam .
TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 :533-549
[33]   Towards the geometry of double Hurwitz numbers [J].
Goulden, IP ;
Jackson, DM ;
Vakil, R .
ADVANCES IN MATHEMATICS, 2005, 198 (01) :43-92
[34]   Monotone Hurwitz Numbers in Genus Zero [J].
Goulden, I. P. ;
Guay-Paquet, Mathieu ;
Novak, Jonathan .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (05) :1020-1042
[35]   A matrix model for hypergeometric Hurwitz numbers [J].
J. Ambjørn ;
L. O. Chekhov .
Theoretical and Mathematical Physics, 2014, 181 :1486-1498
[36]   Cut-and-join equation for monotone Hurwitz numbers revisited [J].
Dunin-Barkowski, P. ;
Kramer, R. ;
Popolitov, A. ;
Shadrin, S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 :1-6
[37]   The Laplace Transform of the Cut-and-Join Equation and the Bouchard-Marino Conjecture on Hurwitz Numbers [J].
Eynard, Bertrand ;
Mulase, Motohico ;
Safnuk, Bradley .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (02) :629-670
[38]   QUASI-POLYNOMIALITY OF MONOTONE ORBIFOLD HURWITZ NUMBERS AND GROTHENDIECK'S DESSINS D'ENFANTS [J].
Kramer, Reinier ;
Lewanski, Danilo ;
Shadrin, Sergey .
DOCUMENTA MATHEMATICA, 2019, 24 :857-898
[39]   Double Hurwitz numbers: polynomiality, topological recursion and intersection theory [J].
Borot, Gaetan ;
Do, Norman ;
Karev, Maksim ;
Lewanski, Danilo ;
Moskovsky, Ellena .
MATHEMATISCHE ANNALEN, 2023, 387 (1-2) :179-243
[40]   Topological recursion on transalgebraic spectral curves and Atlantes Hurwitz numbers [J].
Bouchard, Vincent ;
Kramer, Reinier ;
Weller, Quinten .
JOURNAL OF GEOMETRY AND PHYSICS, 2024, 206