PRUNED HURWITZ NUMBERS

被引:5
作者
Do, Norman [1 ]
Norbury, Paul [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Hurwitz numbers; fatgraphs; topological recursion; COUNTING LATTICE POINTS; MODULI SPACE; INTERSECTION THEORY; SPECTRAL CURVE; POLYNOMIALS; INVARIANTS; RECURSION;
D O I
10.1090/tran/7021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simple Hurwitz numbers count branched covers of the Riemann sphere and are well-studied in the literature. We define a new enumeration that restricts the count to branched covers satisfying an additional constraint. The resulting pruned Hurwitz numbers determine their simple counterparts, but have the advantage of satisfying simpler recursion relations and obeying simpler formulae. As an application of pruned Hurwitz numbers, we obtain a new proof of the Witten-Kontsevich theorem. Furthermore, we apply the idea of defining useful restricted enumerations to orbifold Hurwitz numbers and Belyi Hurwitz numbers.
引用
收藏
页码:3053 / 3084
页数:32
相关论文
共 50 条
  • [21] Laguerre Ensemble: Correlators, Hurwitz Numbers and Hodge Integrals
    Gisonni, Massimo
    Grava, Tamara
    Ruzza, Giulio
    ANNALES HENRI POINCARE, 2020, 21 (10): : 3285 - 3339
  • [22] A matrix model for simple Hurwitz numbers, and topological recursion
    Borot, Gaetan
    Eynard, Bertrand
    Mulase, Motohico
    Safnuk, Brad
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) : 522 - 540
  • [23] Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 360 (02) : 777 - 826
  • [24] Polynomiality of Hurwitz numbers, Bouchard-Marino conjecture, and a new proof of the ELSV formula
    Dunin-Barkowski, P.
    Kazarian, M.
    Orantin, N.
    Shadrin, S.
    Spitz, L.
    ADVANCES IN MATHEMATICS, 2015, 279 : 67 - 103
  • [25] CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (04) : 601 - 633
  • [26] Wall crossings for double Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    ADVANCES IN MATHEMATICS, 2011, 228 (04) : 1894 - 1937
  • [27] HURWITZ NUMBERS AND PRODUCTS OF RANDOM MATRICES
    Orlov, A. Yu.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (03) : 1282 - 1323
  • [28] Weighted Hurwitz Numbers and Topological Recursion
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (01) : 237 - 305
  • [29] LOCALIZATION, HURWITZ NUMBERS AND THE WITTEN CONJECTURE
    Chen, Lin
    Li, Yi
    Liu, Kefeng
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (04) : 511 - 517
  • [30] On ELSV-type formulae, Hurwitz numbers and topological recursion
    Lewanski, D.
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 517 - 532