PRUNED HURWITZ NUMBERS

被引:5
|
作者
Do, Norman [1 ]
Norbury, Paul [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Hurwitz numbers; fatgraphs; topological recursion; COUNTING LATTICE POINTS; MODULI SPACE; INTERSECTION THEORY; SPECTRAL CURVE; POLYNOMIALS; INVARIANTS; RECURSION;
D O I
10.1090/tran/7021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simple Hurwitz numbers count branched covers of the Riemann sphere and are well-studied in the literature. We define a new enumeration that restricts the count to branched covers satisfying an additional constraint. The resulting pruned Hurwitz numbers determine their simple counterparts, but have the advantage of satisfying simpler recursion relations and obeying simpler formulae. As an application of pruned Hurwitz numbers, we obtain a new proof of the Witten-Kontsevich theorem. Furthermore, we apply the idea of defining useful restricted enumerations to orbifold Hurwitz numbers and Belyi Hurwitz numbers.
引用
收藏
页码:3053 / 3084
页数:32
相关论文
共 50 条
  • [1] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [2] Bi-pruned Hurwitz numbers
    Hahn, Marvin Anas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 174
  • [3] MIRROR CURVE OF ORBIFOLD HURWITZ NUMBERS
    Dumitrescu, Olivia
    Mulase, Motohico
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (02): : 307 - 328
  • [4] ON THE RECURSION FORMULA FOR DOUBLE HURWITZ NUMBERS
    Zhu, Shengmao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3749 - 3760
  • [5] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265
  • [6] Hurwitz Numbers: On the Edge Between Combinatorics and Geometry
    Lando, Sergei K.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2444 - 2470
  • [7] Hurwitz numbers for real polynomials
    Itenberg, Ilia
    Zvonkine, Dimitri
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) : 441 - 474
  • [8] Topological recursion and a quantum curve for monotone Hurwitz numbers
    Do, Norman
    Dyer, Alastair
    Mathews, Daniel V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 19 - 36
  • [9] Tropical Hurwitz numbers
    Renzo Cavalieri
    Paul Johnson
    Hannah Markwig
    Journal of Algebraic Combinatorics, 2010, 32 : 241 - 265
  • [10] Weighted Hurwitz numbers and hypergeometric τ-functions: an overview
    Hamad, J.
    STRING-MATH 2014, 2016, 93 : 289 - +