Partial Quasi-Metric Completeness and Caristi's Type Mappings

被引:0
作者
Marin, Josefa [1 ]
机构
[1] Univ Politecn Valencia, IUMPA UPV, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B | 2012年 / 1479卷
关键词
Partial quasi-metric; Partial metric; Weight; Completion; Fixed point theorems; SPACES;
D O I
10.1063/1.4756274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kirk proved in [3] that a metric space (X, d) is complete if, and only if, every Caristi self-mapping on X has a fixed point. Here, we discuss the extension of Kirk's theorem to partial quasi-metric spaces.
引用
收藏
页码:856 / 859
页数:4
相关论文
共 12 条
[1]  
Altun I., 2012, APPL ANAL D IN PRESS
[2]   FIXED-POINT THEOREMS FOR MAPPINGS SATISFYING INWARDNESS CONDITIONS [J].
CARISTI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :241-251
[3]   CARISTIS FIXED-POINT THEOREM AND METRIC CONVEXITY [J].
KIRK, WA .
COLLOQUIUM MATHEMATICUM, 1976, 36 (01) :81-86
[4]   Partial quasi-metrics [J].
Kuenzi, H. -P. A. ;
Pajoohesh, H. ;
Schellekens, M. P. .
THEORETICAL COMPUTER SCIENCE, 2006, 365 (03) :237-246
[5]   Q-Functions on Quasimetric Spaces and Fixed Points for Multivalued Maps [J].
Marin, J. ;
Romaguera, S. ;
Tirado, P. .
FIXED POINT THEORY AND APPLICATIONS, 2011,
[6]  
Matthews S.G., 1994, Annals of the New York Academy of Sciences, V728, P183, DOI 10.1111/j.1749-6632.1994.tb44144.x
[7]  
OLTRA S, 2002, REND CIRC MAT PALERM, V51, P151, DOI DOI 10.1007/BF02871458
[8]   Partial metric monoids and semivaluation spaces [J].
Romaguera, S ;
Schellekens, M .
TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) :948-962
[9]   A Kirk Type Characterization of Completeness for Partial Metric Spaces [J].
Romaguera, Salvador .
FIXED POINT THEORY AND APPLICATIONS, 2010,
[10]   A quantitative computational model for complete partial metric spaces via formal balls [J].
Romaguera, Salvador ;
Valero, Oscar .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2009, 19 (03) :541-563