Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices

被引:7
作者
Chevillard, Laurent [1 ]
Rhodes, Remi [2 ]
Vargas, Vincent [2 ]
机构
[1] ENS Lyon, CNRS, Phys Lab, F-69364 Lyon 07, France
[2] Univ Paris 09, UMR 7564, Ceremade, F-75775 Paris 16, France
关键词
Gaussian multiplicative chaos; Random matrices; Fully developed turbulence; LOCAL-STRUCTURE; TURBULENCE; GRAVITY;
D O I
10.1007/s10955-013-0697-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by isotropic fully developed turbulence, we define a theory of symmetric matrix valued isotropic Gaussian multiplicative chaos. Our construction extends the scalar theory developed by J.P. Kahane in 1985.
引用
收藏
页码:678 / 703
页数:26
相关论文
共 27 条
  • [1] SOME RESULTS FOR THE EXPONENTIAL INTERACTION IN 2 OR MORE DIMENSIONS
    ALBEVERIO, S
    GALLAVOTTI, G
    HOEGHKROHN, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) : 187 - 192
  • [2] [Anonymous], 2001, Encyclopedia of Mathematics and its Applications
  • [3] [Anonymous], 2009, CAMBRIDGE STUDIES AD
  • [4] [Anonymous], TH PROB MATH STAT
  • [5] Continuous cascade models for asset returns
    Bacry, E.
    Kozhemyak, A.
    Muzy, Jean-Francois
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2008, 32 (01) : 156 - 199
  • [6] Barral J., ARXIV12025296V2
  • [7] KPZ in One Dimensional Random Geometry of Multiplicative Cascades
    Benjamini, Itai
    Schramm, Oded
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (02) : 653 - 662
  • [8] Some properties of angular integrals
    Bergere, M.
    Eynard, B.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (26)
  • [9] An extension of the HarishChandra-Itzykson-Zuber integral
    Brézin, E
    Hikami, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (01) : 125 - 137
  • [10] A stochastic representation of the local structure of turbulence
    Chevillard, L.
    Robert, R.
    Vargas, V.
    [J]. EPL, 2010, 89 (05)