Operators with closed range, pseudo-inverses, and perturbation of frames for a subspace

被引:25
作者
Christensen, O [1 ]
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1999年 / 42卷 / 01期
关键词
D O I
10.4153/CMB-1999-004-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent work of Ding and Huang shows that if we perturb a bounded operator (between Hilbert spaces) which has closed range, then the perturbed operator again has dosed range. We extend this result by introducing a weaker perturbation condition, and our result is then used to prove a theorem about the stability of frames for a subspace.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 23 条
[1]  
[Anonymous], J FOURIER ANAL APPL
[2]   Stability theorems for Fourier frames and wavelet Riesz bases [J].
Balan, R .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) :499-504
[3]  
BENEDETTO J, 1998, IN PRESS APPL COMPUT
[4]   Frames containing a Riesz basis and preservation of this property under perturbations [J].
Casazza, PG ;
Christensen, O .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) :266-278
[5]  
CASAZZA PG, FRAMES TRANSLATES
[6]  
CHRISTENEN O, IN PRESS APPL COMPUT
[7]   FRAMES AND PSEUDO-INVERSES [J].
CHRISTENSEN, O .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (02) :401-414
[8]   Frames containing a Riesz basis and approximation of the frame coefficients using finite-dimensional methods [J].
Christensen, O .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (01) :256-270
[9]   A PALEY-WIENER THEOREM FOR FRAMES [J].
CHRISTENSEN, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) :2199-2201
[10]   FRAME PERTURBATIONS [J].
CHRISTENSEN, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1217-1220