Genetic Takagi-Sugeno fuzzy reinforcement learning

被引:5
作者
Yan, XW [1 ]
Deng, ZD [1 ]
Sun, ZQ [1 ]
机构
[1] Tsing Hua Univ, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
来源
PROCEEDINGS OF THE 2001 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC'01) | 2001年
关键词
reinforcement learning; genetic algorithms; Takagi-Sugeno fuzzy inference systems; neuro-fuzzy control;
D O I
10.1109/ISIC.2001.971486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents two fuzzy reinforcement learning methods for solving complicated learning tasks of continuous domains. Takagi-Sugeno fuzzy reinforcement learning (TSFRL) is constructed by combining Takagi-Sugeno type fuzzy inference systems with Q-learning. Next, genetic Takagi-Sugeno fuzzy reinforcement learning (GTSFRL) is introduced by embedding TSFRL into genetic algorithms. Both proposed learning algorithms can also be used to design Takagi-Sugeno fuzzy logic controllers. Experiments on the double inverted pendulum system demonstrate the performance and applicability of the proposed schemes. Finally, the conclusion remark is drawn.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [31] Genetic learning of fuzzy controllers
    Dumitrache, I
    Buiu, C
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 49 (1-2) : 13 - 26
  • [32] NeuroCrossover: An intelligent genetic locus selection scheme for genetic algorithm using reinforcement learning
    Liu, Haoqiang
    Zong, Zefang
    Li, Yong
    Jin, Depeng
    [J]. APPLIED SOFT COMPUTING, 2023, 146
  • [33] Neuro-fuzzy gait synthesis with reinforcement learning for a biped walking robot
    Zhou C.
    [J]. Soft Computing, 2000, 4 (04) : 238 - 250
  • [34] Combining reinforcement learning and genetic algorithms to learn behaviours in mobile robotics
    Iglesias, R.
    Rodriguez, M.
    Regueiro, C. V.
    Correa, J.
    Barro, S.
    [J]. ICINCO 2006: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS: ROBOTICS AND AUTOMATION, 2006, : 188 - 195
  • [35] Evolving Heterotic Gauge Backgrounds: Genetic Algorithms versus Reinforcement Learning
    Abel, Steven
    Constantin, Andrei
    Harvey, Thomas R.
    Lukas, Andre
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2022, 70 (05):
  • [36] Reinforcement Learning in Continuous Spaces by Using Learning Fuzzy Classifier Systems
    Chen, Gang
    Douch, Colin
    Zhang, Mengjie
    Pang, Shaoning
    [J]. NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 320 - 328
  • [37] A New Reinforcement Learning Method for Fuzzy Logic Controllers
    王直杰
    方建安
    邵世煌
    [J]. Journal of China Textile University(English Edition), 1998, (02) : 42 - 45
  • [38] Knowledge acquisition for a soccer agent by fuzzy reinforcement learning
    Nakashima, T
    Udo, M
    Ishibuchi, H
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 4256 - 4261
  • [39] A Fuzzy RANSAC Algorithm Based on Reinforcement Learning Concept
    Watanabe, Toshihiko
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [40] A Reinforcement Learning Adaptive Fuzzy Controller for Differential Games
    Sidney N. Givigi
    Howard M. Schwartz
    Xiaosong Lu
    [J]. Journal of Intelligent and Robotic Systems, 2010, 59 : 3 - 30