Micro-Engineered 3D Scaffolds for Cell Culture Studies

被引:115
作者
Greiner, Alexandra M. [1 ]
Richter, Benjamin [1 ,2 ]
Bastmeyer, Martin [1 ,2 ]
机构
[1] KIT, Dept Cell & Neurobiol, D-76131 Karlsruhe, Germany
[2] KIT, DFG Ctr Funct Nanostruct, D-76131 Karlsruhe, Germany
关键词
bioengineering; biological applications of polymers; direct laser writing; three-dimensional cell cultures; two-photon polymerization; 2-PHOTON POLYMERIZATION; EXTRACELLULAR-MATRIX; SUBSTRATE TOPOGRAPHY; FIBROBLAST CELLS; SOFT LITHOGRAPHY; MIGRATION; CHEMISTRY; HYDROGELS; PROTEINS; MECHANOTRANSDUCTION;
D O I
10.1002/mabi.201200132
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cells in physiological 3D environments differ considerably in morphology and differentiation from those in 2D tissue culture. Naturally derived polymer systems are frequently used to study cells in 3D. These 3D matrices are complex with respect to their chemical composition, mechanical properties, and geometry. Therefore, there is a demand for well-defined 3D scaffolds to systematically investigate cell behavior in 3D. Here, fabrication techniques, materials, architectures, biochemical functionalizations, and mechanical properties of 3D scaffolds are discussed. In particular, work focusing on single cells and small cell assemblies grown in tailored synthetic 3D scaffolds fabricated by computer-based techniques are reviewed and the influence of these environments on cell behavior is evaluated.
引用
收藏
页码:1301 / 1314
页数:14
相关论文
共 50 条
  • [31] Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion
    Heffernan, John M.
    Overstreet, Derek J.
    Le, Long D.
    Vernon, Brent L.
    Sirianni, Rachael W.
    ANNALS OF BIOMEDICAL ENGINEERING, 2015, 43 (08) : 1965 - 1977
  • [32] Real-time monitoring of 3D cell culture using a 3D capacitance biosensor
    Lee, Sun-Mi
    Han, Nalae
    Lee, Rimi
    Choi, In-Hong
    Park, Yong-Beom
    Shin, Jeon-Soo
    Yoo, Kyung-Hwa
    BIOSENSORS & BIOELECTRONICS, 2016, 77 : 56 - 61
  • [33] Micro-Vessels-Like 3D Scaffolds for Studying the Proton Radiobiology of Glioblastoma-Endothelial Cells Co-Culture Models
    Akolawala, Qais
    Keuning, Floor
    Rovituso, Marta
    van Burik, Wouter
    van der Wal, Ernst
    Versteeg, Henri H.
    Rondon, Araci M. R.
    Accardo, Angelo
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (06)
  • [34] Biological Scaffolds in 3D Cell Models: Driving Innovation in Drug Discovery
    Dave, Raj
    Pandey, Kshipra
    Patel, Ritu
    Gour, Nidhi
    Bhatia, Dhiraj
    STEM CELL REVIEWS AND REPORTS, 2025, 21 (01) : 147 - 166
  • [35] Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine
    Marchini, Amanda
    Gelain, Fabrizio
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2022, 42 (03) : 468 - 486
  • [36] Culture of human neurospheres in 3D scaffolds for developmental neurotoxicity testing
    Hellwig, Christine
    Barenys, Marta
    Baumann, Jenny
    Gassmann, Kathrin
    Casanellas, Laura
    Kauer, Gerhard
    Fritsche, Ellen
    TOXICOLOGY IN VITRO, 2018, 52 : 106 - 115
  • [37] Current Advances in 3D Dynamic Cell Culture Systems
    Huang, Xin
    Huang, Zhengxiang
    Gao, Weidong
    Gao, Wendong
    He, Ruiying
    Li, Yulin
    Crawford, Ross
    Zhou, Yinghong
    Xiao, Lan
    Xiao, Yin
    GELS, 2022, 8 (12)
  • [38] Artificial 3D Culture Systems for T Cell Expansion
    Perez del Rio, Eduardo
    Martinez Miguel, Marc
    Veciana, Jaume
    Ratera, Imma
    Guasch, Judith
    ACS OMEGA, 2018, 3 (05): : 5273 - 5280
  • [39] Hierarchically Curved Gelatin for 3D Biomimetic Cell Culture
    Pahapale, Gayatri J.
    Gao, Sammy
    Romer, Lewis H.
    Gracias, David H.
    ACS APPLIED BIO MATERIALS, 2019, 2 (12): : 6004 - 6011
  • [40] Methacrylated fibrinogen hydrogels for 3D cell culture and delivery
    Simaan-Yameen, Haneen
    Bar-Am, Orit
    Saar, Galit
    Seliktar, Dror
    ACTA BIOMATERIALIA, 2023, 164 : 94 - 110