Convergence and rate of approximation for linear integral operators in BVφ-spaces in multidimensional setting

被引:36
作者
Angeloni, Laura [1 ]
Vinti, Gianluca [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
Linear convolution integral operators; Multidimensional phi-variation; Rate of approximation; Lipschitz classes; phi-modulus of smoothness; Higher order of approximation; GENERALIZED VARIATION;
D O I
10.1016/j.jmaa.2008.08.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper. where for the first time it is introduced a multidimensional concept of phi-variation in the sense of Tonelli, we extend previous results concerning convergence, order of approximation and higher order of approximation for linear integral operators in BV phi(R-N) (space of functions with bounded phi-variation in R-N). Moreover we give a further generalization of the theory introducing the concept of F-phi-variation, where F is a continuous sublinear functional. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 334
页数:18
相关论文
共 38 条
[11]  
Boni M., 1971, ATTI SEMINARIO MATEM, V20, P187
[12]  
Butzer P.L., 1971, Reviews in Group Representation Theory, Part A (Pure and Applied Mathematics Series, V1
[13]  
Camille J., 1881, Camptesrendushebdomadaires Sances Lacademie Des Sci, V92, P228, DOI [10.2307/2316319 (French, DOI 10.2307/2316319(FRENCH]
[14]  
De Giorgi E., 1954, Ann. Mat. Pura Appl. (4), V36, P191, DOI [10.1007/BF02412838, DOI 10.1007/BF02412838]
[15]  
Giusti E., 1984, MONOGR MATH, V80
[16]   SUBLINEAR FUNCTIONS OF MEASURES + VARIATIONAL INTEGRALS [J].
GOFFMAN, C ;
SERRIN, J .
DUKE MATHEMATICAL JOURNAL, 1964, 31 (01) :159-&
[17]   MODULAR SPACES OF GENERALIZED VARIATION [J].
HERDA, HH .
STUDIA MATHEMATICA, 1968, 30 (01) :21-&
[18]  
Hoffman K., 1975, Analysis in Euclidean space, pxiv+432
[19]   ON CONSTRUCTIVE ONE-SIDED APPROXIMATION OF MULTIVARIATE FUNCTIONS OF BOUNDED VARIATION [J].
LENZE, B .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1990, 11 (1-2) :55-83
[20]  
Lenze B., 1991, APPROX THEORY APPL, V7, P1