Convergence and rate of approximation for linear integral operators in BVφ-spaces in multidimensional setting

被引:37
作者
Angeloni, Laura [1 ]
Vinti, Gianluca [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
Linear convolution integral operators; Multidimensional phi-variation; Rate of approximation; Lipschitz classes; phi-modulus of smoothness; Higher order of approximation; GENERALIZED VARIATION;
D O I
10.1016/j.jmaa.2008.08.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper. where for the first time it is introduced a multidimensional concept of phi-variation in the sense of Tonelli, we extend previous results concerning convergence, order of approximation and higher order of approximation for linear integral operators in BV phi(R-N) (space of functions with bounded phi-variation in R-N). Moreover we give a further generalization of the theory introducing the concept of F-phi-variation, where F is a continuous sublinear functional. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 334
页数:18
相关论文
共 38 条
[1]  
Angeloni L, 2007, DIFFER INTEGRAL EQU, V20, P339
[2]   Convergence in Variation and Rate of Approximation for Nonlinear Integral Operators of Convolution Type [J].
Angeloni, Laura ;
Vinti, Gianluca .
RESULTS IN MATHEMATICS, 2006, 49 (1-2) :1-23
[3]  
[Anonymous], 1936, ANN SCUOLA NORM-SCI
[4]  
[Anonymous], LECT NOTES MATH
[5]   Mappings of bounded Φ-variation with arbitrary function Φ [J].
Chistyakov V.V. ;
Galkin O.E. .
Journal of Dynamical and Control Systems, 1998, 4 (2) :217-247
[6]  
Bardaro C., 1982, ATTI SEMINARIO MATEM, V31, P302
[7]  
Bardaro C., 2003, Analysis, V23, P299, DOI DOI 10.1524/ANLY.2003.23.4.299
[8]  
Bardaro C., 2003, DEGRUYTER SER NONLIN, V9
[9]  
Bardaro C., 2001, Functiones et Approximatio Commentarii Mathematici, V29, P17, DOI [10.7169/facm/1538186713, DOI 10.7169/FACM/1538186713]
[10]  
Bardaro C., 2004, COMMENT MATH TOMUS S, P47