Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires

被引:55
作者
Hsu, Cheng-Liang [1 ]
Lu, Ying-Ching [1 ]
机构
[1] Natl Univ Tainan, Dept Elect Engn, Tainan 700, Taiwan
关键词
LIGHT-EMITTING-DIODES; ZNO NANOWIRES; LARGE-SCALE; GROWTH; NANORODS; SENSORS; FILMS;
D O I
10.1039/c2nr31428b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study investigates the feasibility of synthesizing high-density transparent Ga2O3/SnO2:Ga coreshell nanowires on a sapphire substrate at 1000 degrees C by VLS. The doping Ga concentrations are 0.46, 1.07, 2.30 and 17.53 atomic%. The XRD spectrum and HR-TEM reveal Ga2O3 and SnO2 as having monoclinic and tetragonal rutile structures, respectively. Experimental results indicate that the XRD peak shift of SnO2 to a larger angle increases with the increasing amount of Ga doping. According to the CL spectrum, SnO2 and Ga2O3 peak at approximately 528-568 nm and 422-424 nm, respectively. The maximum quantum efficiency of Ga2O3/SnO2:Ga core-shell nanowires is around 0.362%. The UV light on-off current contrast ratio of Ga2O3/SnO2:Ga core-shell nanowires is around 1066.7 at a bias of 5 V. Moreover, the dynamic response of Ga2O3/SnO2:Ga core-shell nanowires has an on-off current contrast ratio of around 16. Furthermore, the Ga2O3 region functions similar to a capacitor and continues to accumulate SnO2:Ga excited electrons under UV light exposure.
引用
收藏
页码:5710 / 5717
页数:8
相关论文
共 26 条
[1]   Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors:: a status report [J].
Barsan, N ;
Schweizer-Berberich, M ;
Göpel, W .
FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1999, 365 (04) :287-304
[2]   The surface and materials science of tin oxide [J].
Batzill, M ;
Diebold, U .
PROGRESS IN SURFACE SCIENCE, 2005, 79 (2-4) :47-154
[3]   Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes [J].
Chen, Yujin ;
Zhu, Chunling ;
Cao, Maosheng ;
Wang, Taihong .
NANOTECHNOLOGY, 2007, 18 (28)
[4]   Large-scale, solution-phase growth of single-crystalline SnO2 nanorods [J].
Cheng, B ;
Russell, JM ;
Shi, WS ;
Zhang, L ;
Samulski, ET .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :5972-5973
[5]   Solvothermal controlled growth of Zn-doped SnO2 branched nanorod clusters [J].
Cheng, Guoe ;
Wu, Kui ;
Zhao, Pingtang ;
Cheng, Yang ;
He, Xianliang ;
Huang, Kaixun .
JOURNAL OF CRYSTAL GROWTH, 2007, 309 (01) :53-59
[6]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[7]   Rectifying behavior of electrically aligned ZnO nanorods [J].
Harnack, O ;
Pacholski, C ;
Weller, H ;
Yasuda, A ;
Wessels, JM .
NANO LETTERS, 2003, 3 (08) :1097-1101
[8]   UV photoresponse of single ZnO nanowires [J].
Heo, YW ;
Kang, BS ;
Tien, LC ;
Norton, DP ;
Ren, F ;
La Roche, JR ;
Pearton, SJ .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (03) :497-499
[9]   Molecular-scale interface engineering for polymer light-emitting diodes [J].
Ho, PKH ;
Kim, JS ;
Burroughes, JH ;
Becker, H ;
Li, SFY ;
Brown, TM ;
Cacialli, F ;
Friend, RH .
NATURE, 2000, 404 (6777) :481-484
[10]   VLS Growth of Cubic Structure Al-Doped SnO2 Nanowire Using Al/Pd/Au Catalyst Diffusion [J].
Hsu, Cheng-Liang ;
Lin, Yan-Ru ;
Hsueh, Ting-Jen .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (05) :K152-K155