Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study

被引:43
作者
Kheirbek, Iyad [1 ]
Johnson, Sarah [1 ]
Ross, Zev [2 ]
Pezeshki, Grant [1 ]
Ito, Kazuhiko [1 ]
Eisl, Holger [3 ]
Matte, Thomas [1 ]
机构
[1] Bur Environm Surveillance & Policy, New York City Dept Hlth & Mental Hyg, New York, NY 10013 USA
[2] ZevRoss Spatial Anal, Ithaca, NY 14850 USA
[3] CUNY Queens Coll, Ctr Biol Nat Syst, Flushing, NY 11367 USA
关键词
Benzene; Formaldehyde; BTEX; Land use regression (LUR); Air toxics; Traffic; Hazardous air pollutants (HAP); VOLATILE ORGANIC-COMPOUNDS; HAZARDOUS AIR-POLLUTANTS; INTRAURBAN VARIABILITY; POLLUTION; EXPOSURE; TOXICS; SAMPLER; RISKS; VOCS; NO2;
D O I
10.1186/1476-069X-11-51
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background: Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. Methods: To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Results: Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Conclusions: Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Estimation of outdoor NOx, NO2, and BTEX exposure in a cohort of pregnant women using land use regression modeling [J].
Aguilera, Inmaculada ;
Sunyer, Jordi ;
Fernandez-Patier, Rosalia ;
Hoek, Gerard ;
Aguirre-Alfaro, Amelia ;
Meliefste, Kees ;
Bomboi-Mingarro, M. Teresa ;
Nieuwenhuijsen, Mark J. ;
Herce-Garraleta, Dolores ;
Brunekreef, Bert .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (03) :815-821
[2]  
Air Toxics Limited, 2011, METH MAN 4 0 TO 5 TO, P12
[3]  
Air Toxics Limited, 2011, NELAP QUAL MAN 13 0, P52
[4]  
[Anonymous], 2006, EPA600R05004AF OFF R
[5]  
Brauer Michael, 2010, Proc Am Thorac Soc, V7, P111, DOI 10.1513/pats.200908-093RM
[6]   High spatial resolution monitoring of benzene and toluene in the Urban Area of Taranto (Italy) [J].
Bruno, P. ;
Caselli, M. ;
de Gennaro, G. ;
de Gennaro, L. ;
Tutino, M. .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2006, 54 (02) :177-187
[7]  
City of New York, 2007, PLANYC 2030
[8]   Urban benzene and population exposure [J].
Cocheo, V ;
Sacco, P ;
Boaretto, C ;
De Saeger, E ;
Ballesta, PP ;
Skov, H ;
Goelen, E ;
Gonzalez, N ;
Caracena, AB .
NATURE, 2000, 404 (6774) :141-142
[9]   Statistical analysis of primary and secondary atmospheric formaldehyde [J].
Friedfeld, S ;
Fraser, M ;
Ensor, K ;
Tribble, S ;
Rehle, D ;
Leleux, D ;
Tittel, F .
ATMOSPHERIC ENVIRONMENT, 2002, 36 (30) :4767-4775
[10]   Evaluation of the effect of different sampling time periods and ambient air pollutant concentrations on the performance of the Radiello® diffusive sampler for the analysis of VOCs by TD-GC/MS [J].
Gallego, E. ;
Roca, F. J. ;
Perales, J. F. ;
Guardino, X. .
JOURNAL OF ENVIRONMENTAL MONITORING, 2011, 13 (09) :2612-2622