Object-oriented crop classification using multitemporal ETM plus SLC-off imagery and random forest

被引:81
|
作者
Long, John A. [1 ]
Lawrence, Rick L. [1 ]
Greenwood, Mark C. [2 ]
Marshall, Lucy [1 ]
Miller, Perry R. [1 ]
机构
[1] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59715 USA
[2] Montana State Univ, Dept Math Sci, Bozeman, MT 59715 USA
关键词
remote sensing; agriculture; classification; multitemporal; multispectral; object-oriented; random forest; Enhanced Thematic Mapper Plus; Landsat; LAND-USE CLASSIFICATION; TIME-SERIES; FILLING GAPS; SEGMENTATION; REGRESSION;
D O I
10.1080/15481603.2013.817150
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The utility of Enhanced Thematic Mapper Plus (ETM+) has been diminished since the 2003 scan-line corrector (SLC) failure. Uncorrected images have data gaps of approximately 22% and gap-filling schemes have been developed to improve their usability. We present a method to classify a northeast Montana agricultural landscape using ETM+ SLC-off imagery without gap-filling. We use multitemporal data analysis and employ an object-oriented approach to define objects, agricultural fields, with cadastral data. This approach was assessed by comparison to a pixel-based approach. Results indicate that an ETM+ SLC-off image can be classified with better than 85% overall accuracy without gap-filling.
引用
收藏
页码:418 / 436
页数:19
相关论文
共 50 条
  • [1] Using neural networks to map Africa's land cover with Landsat ETM plus SLC-off imagery
    Aitkenhead, M. J.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XI, 2009, 7472
  • [2] MAP-MRF Approach to Landsat ETM plus SLC-Off Image Classification
    Zhu, Xiaolin
    Liu, Desheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 1131 - 1141
  • [3] Application of geographically weighted regression to fill gaps in SLC-off Landsat ETM plus satellite imagery
    Zhang, Chuanrong
    Li, Weidong
    Civco, Daniel
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (22) : 7650 - 7672
  • [4] Filling Landsat ETM plus SLC-off gaps using a segmentation model approach
    Maxwell, S
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2004, 70 (10): : 1109 - 1111
  • [5] Open quarry monitoring using gap-filled LANDSAT 7 ETM SLC-OFF imagery
    Nikolakopoulos, Konstantinos G.
    Raptis, Ilias
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS V, 2014, 9245
  • [6] Recovering missing pixels for Landsat ETM plus SLC-off imagery using multi-temporal regression analysis and a regularization method
    Zeng, Chao
    Shen, Huanfeng
    Zhang, Liangpei
    REMOTE SENSING OF ENVIRONMENT, 2013, 131 : 182 - 194
  • [7] Gaps-fill of SLC-off Landsat ETM plus satellite image using a geostatistical approach
    Zhang, C.
    Li, W.
    Travis, D.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (22) : 5103 - 5122
  • [8] Object-oriented crop classification based on UAV remote sensing imagery
    ZHANG Lan
    ZHANG Yanhong
    Global Geology, 2022, 25 (01) : 60 - 68
  • [9] Comparison of data gap-filling methods for Landsat ETM plus SLC-off imagery for monitoring forest degradation in a semi-deciduous tropical forest in Mexico
    Romero-Sanchez, Martin Enrique
    Ponce-Hernandez, Raul
    Franklin, Steven E.
    Arturo Aguirre-Salado, Carlos
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (11) : 2786 - 2799
  • [10] Using Window Regression to Gap-Fill Landsat ETM plus Post SLC-Off Data
    Brooks, Evan B.
    Wynne, Randolph H.
    Thomas, Valerie A.
    REMOTE SENSING, 2018, 10 (10)