Object-oriented crop classification using multitemporal ETM plus SLC-off imagery and random forest

被引:81
作者
Long, John A. [1 ]
Lawrence, Rick L. [1 ]
Greenwood, Mark C. [2 ]
Marshall, Lucy [1 ]
Miller, Perry R. [1 ]
机构
[1] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59715 USA
[2] Montana State Univ, Dept Math Sci, Bozeman, MT 59715 USA
关键词
remote sensing; agriculture; classification; multitemporal; multispectral; object-oriented; random forest; Enhanced Thematic Mapper Plus; Landsat; LAND-USE CLASSIFICATION; TIME-SERIES; FILLING GAPS; SEGMENTATION; REGRESSION;
D O I
10.1080/15481603.2013.817150
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The utility of Enhanced Thematic Mapper Plus (ETM+) has been diminished since the 2003 scan-line corrector (SLC) failure. Uncorrected images have data gaps of approximately 22% and gap-filling schemes have been developed to improve their usability. We present a method to classify a northeast Montana agricultural landscape using ETM+ SLC-off imagery without gap-filling. We use multitemporal data analysis and employ an object-oriented approach to define objects, agricultural fields, with cadastral data. This approach was assessed by comparison to a pixel-based approach. Results indicate that an ETM+ SLC-off image can be classified with better than 85% overall accuracy without gap-filling.
引用
收藏
页码:418 / 436
页数:19
相关论文
共 48 条
[1]   Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification [J].
Abou El-Magd, I ;
Tanton, TW .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (21) :4197-4206
[2]   Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP [J].
Adam, E. M. ;
Mutanga, O. ;
Rugege, D. ;
Ismail, R. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (02) :552-569
[3]  
[Anonymous], 2009, ASSESSING ACCURACY R
[4]   Landsat-7 long-term acquisition plan: Development and validation [J].
Arvidson, Terry ;
Goward, Samuel ;
Gasch, John ;
Williams, Darrel .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (10) :1137-1146
[5]   Land-use classification of multispectral aerial images using artificial neural networks [J].
Ashish, D. ;
McClendon, R. W. ;
Hoogenboom, G. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (08) :1989-2004
[6]  
Boloorani A. D., 2008, P SPIE IS T IM PROC
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Random Forest characterization of upland vegetation and management burning from aerial imagery [J].
Chapman, Daniel S. ;
Bonn, Aletta ;
Kunin, William E. ;
Cornell, Stephen J. .
JOURNAL OF BIOGEOGRAPHY, 2010, 37 (01) :37-46
[10]  
Chen F., 2010, P 18 INT C GEOINF