Exact results for the O(N) model with quenched disorder

被引:9
作者
Delfino, Gesualdo [1 ,2 ]
Lamsen, Noel [1 ,2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Via Bonomea 265, I-34136 Trieste, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 04期
关键词
Field Theories in Lower Dimensions; Random Systems; 2D ISING-MODEL; CRITICAL-BEHAVIOR; PHASE-TRANSITION; POTTS-MODEL; MONTE-CARLO; EXPONENTS; UNIVERSALITY; SYMMETRY; ENERGY;
D O I
10.1007/JHEP04(2018)077
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points for 0(N)-symmetric models with quenched disorder in two dimensions. Random fixed points are characterized by two disorder parameters: a modulus that vanishes when approaching the pure case, and a phase angle. The critical lines fall into three classes depending on the values of the disorder modulus. Besides the class corresponding to the pure case, a second class has maximal value of the disorder modulus and includes Nishimori-like multicritical points as well as zero temperature fixed points. The third class contains critical lines that interpolate, as N varies, between the first two classes. For positive N, it contains a single line of infrared fixed points spanning the values of N from root 2 - 1 to 1. The symmetry sector of the energy density operator is superuniversal (i.e. N-independent) along this line. For N = 2 a line of fixed points exists only in the pure case, but accounts also for the Berezinskii-Kosterlitz-Thouless phase observed in presence of disorder.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] Magnetic and glassy transitions in the square-lattice XY model with random phase shifts
    Alba, Vincenzo
    Pelissetto, Andrea
    Vicari, Ettore
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [2] [Anonymous], 1981, SOV PHYS JETP LETT
  • [3] INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY
    BELAVIN, AA
    POLYAKOV, AM
    ZAMOLODCHIKOV, AB
    [J]. NUCLEAR PHYSICS B, 1984, 241 (02) : 333 - 380
  • [4] BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
  • [5] Critical behavior of random-bond Potts models
    Cardy, J
    Jacobsen, JL
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4063 - 4066
  • [6] Cardy J. L, 1996, CAMBRIDGE LECT NOTES
  • [7] Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries
    Chatelain, C
    Berche, B
    [J]. PHYSICAL REVIEW E, 1999, 60 (04): : 3853 - 3865
  • [8] RANDOMNESS-INDUCED 2ND-ORDER TRANSITION IN THE 2-DIMENSIONAL 8-STATE POTTS-MODEL - A MONTE-CARLO STUDY
    CHEN, S
    FERRENBERG, AM
    LANDAU, DP
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (08) : 1213 - 1215
  • [9] MONTE-CARLO SIMULATION OF PHASE-TRANSITIONS IN A 2-DIMENSIONAL RANDOM-BOND POTTS-MODEL
    CHEN, S
    FERRENBERG, AM
    LANDAU, DP
    [J]. PHYSICAL REVIEW E, 1995, 52 (02): : 1377 - 1386
  • [10] Phase transition in the 2D random Potts model in the large-q limit -: art. no. 190601
    d'Auriac, JCA
    Iglói, F
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (19) : 4