DECAY RATES FOR TIMOSHENKO SYSTEM WITH NONLINEAR ARBITRARY LOCALIZED DAMPING

被引:1
作者
Santos, M. L. [1 ]
Almeida Junior, D. S. [1 ]
Rodrigues, J. H. [2 ]
Falcao Nascimento, Flavio A. [3 ]
机构
[1] Fed Univ Para, Fac Math, BR-66075110 Belem, PA, Brazil
[2] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, PR, Brazil
[3] State Univ Ceara FAFIDAM, Dept Math, BR-62930000 Limoeiro Do Norte, CE, Brazil
关键词
EXPONENTIAL STABILITY; ASYMPTOTIC-BEHAVIOR; WAVE-EQUATION; ENERGY DECAY; STABILIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Timoshenko model for vibrating beams under the localized effect of both nonlinear frictional damping acting on the transverse displacement equation and on the rotation angle equation. We have obtained the exponential stability behavior for solutions, using an observability result, which allows us to consider different speeds of propagation for the waves.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 26 条
[1]   Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control [J].
Alabau-Boussouira, Fatiha .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6) :643-669
[2]   Strong lower energy estimates for nonlinearly damped Timoshenko beams and Petrowsky equations [J].
Alabau-Boussouira, Fatiha .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (05) :571-597
[3]   Energy decay for Timoshenko systems of memory type [J].
Ammar-Khodja, F ;
Benabdallah, A ;
Rivera, JEM ;
Racke, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) :82-115
[4]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[5]  
[Anonymous], 1993, DIFFER INTEGR EQUATI
[6]  
Barbu V, 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania
[7]   Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Valeria N. Domingos ;
Lasiecka, Irena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) :407-459
[8]   Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions [J].
Cavalcanti, Marcelo M. ;
Khemmoudj, Ammar ;
Medjden, Mohamed .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :900-930
[9]   ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT MANIFOLDS AND LOCALLY DISTRIBUTED VISCOELASTIC DISSIPATION [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Nascimento, Flavio A. F. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) :3183-3193
[10]   Stabilization of the damped wave equation with Cauchy-Ventcel boundary conditions [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Fukuoka, Ryuichi ;
Toundykov, Daniel .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (01) :143-169