Quasi-stationary optical Gaussons

被引:10
作者
Biswas, Anjan [1 ]
Milovic, Daniela [2 ]
Girgis, Laila [1 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[2] Univ Nis, Fac Elect Engn, Dept Telecommun, Nish 18000, Serbia
来源
OPTIK | 2013年 / 124卷 / 17期
关键词
Gaussons; Multiple-scales perturbation; Fredholm's alternative; Numerics; Integrability; POWER-LAW NONLINEARITY; SOLITON PERTURBATION; SATURABLE AMPLIFIERS; SCHRODINGER-EQUATION; RAMAN-SCATTERING; LANGMUIR-WAVES; PLASMAS; FIBERS;
D O I
10.1016/j.ijleo.2012.09.055
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper studies the dynamics of optical solitons with log law nonlinearity, also known as optical Gaussons, in the presence of perturbation terms. The multiple-scale perturbation analysis is applied to obtain the quasi-stationary optical Gaussons solution. The definition of the phase that is introduced in this paper reveals a couple of resonant conditions that cannot be otherwise recovered. A numerical simulation is also included. (C) 2012 Elsevier GmbH. All rights reserved.
引用
收藏
页码:2959 / 2962
页数:4
相关论文
共 30 条
[1]   QUASI-STATIONARY SOLITONS FOR LANGMUIR WAVES IN PLASMAS WITH FULL NONLINEARITY [J].
Atif, Sami ;
Biswas, Anjan ;
Zerrad, Essaid .
JOURNAL OF MULTISCALE MODELLING, 2011, 3 (04) :217-227
[2]   GAUSSONS - SOLITONS OF THE LOGARITHMIC SCHRODINGER EQUATION [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
PHYSICA SCRIPTA, 1979, 20 (3-4) :539-544
[3]   Optical soliton perturbation with bandwidth limited amplification and saturable amplifiers [J].
Biswas, A .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 1999, 8 (02) :277-288
[4]   Integro-differential perturbations of optical solitons [J].
Biswas, A .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2000, 2 (05) :380-388
[5]   Quasi-stationary optical solitons with dual-power law nonlinearity [J].
Biswas, A .
OPTICS COMMUNICATIONS, 2004, 235 (1-3) :183-194
[6]   Perturbations of optical solitons and quasi-solitons [J].
Biswas, A .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2000, 14 (01) :95-114
[7]   Quasi-stationary non-Kerr law optical solitons [J].
Biswas, A .
OPTICAL FIBER TECHNOLOGY, 2003, 9 (04) :224-259
[8]   Quasi-stationary optical solitons with power law nonlinearity [J].
Biswas, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (16) :4581-4589
[9]   Optical solitons: Quasi-stationarity versus Lie transform [J].
Biswas, A .
OPTICAL AND QUANTUM ELECTRONICS, 2003, 35 (10) :979-998
[10]   Quasi-stationary optical solitons with parabolic law nonlinearity [J].
Biswas, A .
OPTICS COMMUNICATIONS, 2003, 216 (4-6) :427-437