The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China

被引:199
|
作者
Cuo, Lan [1 ]
Zhang, Yongxin [2 ]
Gao, Yanhong [3 ]
Hao, Zhenchun [4 ]
Cairang, Luosang [5 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Laboratoy Tibetan Environm Changes & Land Sur, Beijing, Peoples R China
[2] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA
[3] Chinese Acad Sci, Key Lab Land Surface Proc & Climate Change Cold &, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Gansu, Peoples R China
[4] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China
[5] Qinghai Agr & Forestry Adm, Xining, Qinghai Provinc, Peoples R China
关键词
Hydrological processes; Hydrological modeling; Climate change and land cover change/use impacts; The upper Yellow River Basin; REGIONAL-SCALE HYDROLOGY; LONG-TERM TREND; SOIL-MOISTURE; TIBETAN PLATEAU; VIC-2L MODEL; WATER-RESOURCES; SNOWMELT RUNOFF; SURFACE MODEL; FROZEN SOIL; LAST HALF;
D O I
10.1016/j.jhydrol.2013.08.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Observed streamflow over the past decades in the upper Yellow River Basin (UYRB) was examined for changes in hydrological regime. The modified Variable Infiltration Capacity (VIC) model was employed to better understand climate change impact and long-term and recent land cover/use change impact as it relates to the "Grain for Green Project" and "Three Rivers Source Region Reserve" on water resources by examining mechanisms behind observed streamflow changes. UYRB hydrological regimes have undergone changes over the past decades as reflected by a decrease in wet and warm season streamflow, and annual streamflow. Progressively more streamflow has been generated in the early part of the year compared to the latter part, consequently leading to the earlier occurrence of the day representing the midpoint of yearly mass flow. VIC simulations suggest that these changes in observed streamflow were due to the combined effects of changes in precipitation, evapotranspiration, rainfall runoff, and baseflow and were caused primarily by climate change above Tang Nai Hai (TNH) hydrometric station. Below TNH where human activity is relative intense, land cover/ use change and reservoir release impacts became important. Changes in snowmelt runoff were negligible over the past decades. Owing to this, snowmelt runoff appeared to play only a modest role in the changing hydrology of the region. The conservation programs were shown to start to exhibit some positive impacts on water resources in the UYRB. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 50 条
  • [11] LAND-USE CHANGE IMPACTS ON THE HYDROLOGY OF THE UPPER GRANDE RIVER BASIN, BRAZIL
    de Oliveira, Vinicius Augusto
    de Mello, Carlos Rogerio
    Viola, Marcelo Ribeiro
    Srinivasan, Raghavan
    CERNE, 2018, 24 (04) : 334 - 343
  • [12] Impacts of Climate Change and Land Use/Cover Change on Streamflow in Beichuan River Basin in Qinghai Province, China
    Liu, Zhe
    Cuo, Lan
    Li, Qijiang
    Liu, Xisheng
    Ma, Xuelian
    Liang, Liqiao
    Ding, Jin
    WATER, 2020, 12 (04)
  • [13] Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China
    Yang, Jie
    Xie, Baopeng
    Zhang, Degang
    Tao, Wenqian
    ENVIRONMENTAL EARTH SCIENCES, 2021, 80 (03)
  • [14] Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China
    Jie Yang
    Baopeng Xie
    Degang Zhang
    Wenqian Tao
    Environmental Earth Sciences, 2021, 80
  • [15] Snow Hydrology in the Upper Yellow River Basin Under Climate Change: A Land Surface Modeling Perspective
    Liu, Wenbin
    Wang, Lei
    Sun, Fubao
    Li, Zehua
    Wang, Hong
    Liu, Jiahong
    Yang, Tao
    Zhou, Jing
    Qi, Jia
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (22) : 12676 - 12691
  • [16] Impacts of climate change on hydrology in the Yellow River source region, China
    Jin, Junliang
    Wang, Guoqing
    Zhang, Jianyun
    Yang, Qinli
    Liu, Cuishan
    Liu, Yanli
    Bao, Zhenxin
    He, Ruimin
    JOURNAL OF WATER AND CLIMATE CHANGE, 2020, 11 (03) : 916 - 930
  • [17] The impact of climate variability and land use/cover change on the water balance in the Middle Yellow River Basin, China
    Bao, Zhenxin
    Zhang, Jianyun
    Wang, Guoqing
    Chen, Qiuwen
    Guan, Tiesheng
    Yan, Xiaolin
    Liu, Cuishan
    Liu, Jing
    Wang, Jie
    JOURNAL OF HYDROLOGY, 2019, 577
  • [18] Impacts of climate variability and change on hydrology and water resources in the Yellow River basin
    Guo, Shenglian
    Liu, Pan
    Peng, Dingzhi
    Zhang, Honggang
    Pan, Bo
    Chen, Hua
    Regional Hydrological Impacts of Climatic Change - Impact Assessment and Decision Making, 2005, 295 : 157 - 166
  • [19] Impacts of recent climate change on the hydrology in the source region of the Yellow River basin
    Meng, Fanchong
    Su, Fengge
    Yang, Daqing
    Tong, Kai
    Hao, Zhenchun
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2016, 6 : 66 - 81
  • [20] Effects of land use and land cover change under shared socioeconomic pathways on future climate in the Yellow River basin, China
    Ru, Xutong
    Qiao, Longxin
    Zhang, Haopeng
    Bai, Tianqi
    Min, Ruiqi
    Wang, Yaobin
    Wang, Qianfeng
    Song, Hongquan
    URBAN CLIMATE, 2024, 55