The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China

被引:199
|
作者
Cuo, Lan [1 ]
Zhang, Yongxin [2 ]
Gao, Yanhong [3 ]
Hao, Zhenchun [4 ]
Cairang, Luosang [5 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Laboratoy Tibetan Environm Changes & Land Sur, Beijing, Peoples R China
[2] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA
[3] Chinese Acad Sci, Key Lab Land Surface Proc & Climate Change Cold &, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Gansu, Peoples R China
[4] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China
[5] Qinghai Agr & Forestry Adm, Xining, Qinghai Provinc, Peoples R China
关键词
Hydrological processes; Hydrological modeling; Climate change and land cover change/use impacts; The upper Yellow River Basin; REGIONAL-SCALE HYDROLOGY; LONG-TERM TREND; SOIL-MOISTURE; TIBETAN PLATEAU; VIC-2L MODEL; WATER-RESOURCES; SNOWMELT RUNOFF; SURFACE MODEL; FROZEN SOIL; LAST HALF;
D O I
10.1016/j.jhydrol.2013.08.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Observed streamflow over the past decades in the upper Yellow River Basin (UYRB) was examined for changes in hydrological regime. The modified Variable Infiltration Capacity (VIC) model was employed to better understand climate change impact and long-term and recent land cover/use change impact as it relates to the "Grain for Green Project" and "Three Rivers Source Region Reserve" on water resources by examining mechanisms behind observed streamflow changes. UYRB hydrological regimes have undergone changes over the past decades as reflected by a decrease in wet and warm season streamflow, and annual streamflow. Progressively more streamflow has been generated in the early part of the year compared to the latter part, consequently leading to the earlier occurrence of the day representing the midpoint of yearly mass flow. VIC simulations suggest that these changes in observed streamflow were due to the combined effects of changes in precipitation, evapotranspiration, rainfall runoff, and baseflow and were caused primarily by climate change above Tang Nai Hai (TNH) hydrometric station. Below TNH where human activity is relative intense, land cover/ use change and reservoir release impacts became important. Changes in snowmelt runoff were negligible over the past decades. Owing to this, snowmelt runoff appeared to play only a modest role in the changing hydrology of the region. The conservation programs were shown to start to exhibit some positive impacts on water resources in the UYRB. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 50 条
  • [1] Impacts of Climate Change and Land Use/Cover Change on Streamflow in Beichuan River Basin in Qinghai Province, China
    Liu, Zhe
    Cuo, Lan
    Li, Qijiang
    Liu, Xisheng
    Ma, Xuelian
    Liang, Liqiao
    Ding, Jin
    WATER, 2020, 12 (04)
  • [2] Impacts of climate change on hydrology in the Yellow River source region, China
    Jin, Junliang
    Wang, Guoqing
    Zhang, Jianyun
    Yang, Qinli
    Liu, Cuishan
    Liu, Yanli
    Bao, Zhenxin
    He, Ruimin
    JOURNAL OF WATER AND CLIMATE CHANGE, 2020, 11 (03) : 916 - 930
  • [3] LAND-USE CHANGE IMPACTS ON THE HYDROLOGY OF THE UPPER GRANDE RIVER BASIN, BRAZIL
    de Oliveira, Vinicius Augusto
    de Mello, Carlos Rogerio
    Viola, Marcelo Ribeiro
    Srinivasan, Raghavan
    CERNE, 2018, 24 (04) : 334 - 343
  • [4] Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China
    Yang, Linshan
    Feng, Qi
    Yin, Zhenliang
    Wen, Xiaohu
    Si, Jianhua
    Li, Changbin
    Deo, Ravinesh C.
    HYDROLOGICAL PROCESSES, 2017, 31 (05) : 1100 - 1112
  • [5] Impact of projected climate change on the hydrology in the headwaters of the Yellow River basin
    Zhang, Yueguan
    Su, Fengge
    Hao, Zhenchun
    Xu, Chongyu
    Yu, Zhongbo
    Wang, Lu
    Tong, Kai
    HYDROLOGICAL PROCESSES, 2015, 29 (20) : 4379 - 4397
  • [6] Impacts of Climate and Land Use/Cover Change on Streamflow Using SWAT and a Separation Method for the Xiying River Basin in Northwestern China
    Guo, Jing
    Su, Xiaoling
    Singh, Vijay P.
    Jin, Jiming
    WATER, 2016, 8 (05)
  • [7] Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management
    Mango, L. M.
    Melesse, A. M.
    McClain, M. E.
    Gann, D.
    Setegn, S. G.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (07) : 2245 - 2258
  • [8] Impacts of land use/land cover and climate change on hydrological cycle in the Xiaoxingkai Lake Basin
    Xiao, Feiyan
    Wang, Xunming
    Fu, Congsheng
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 47
  • [9] Predicting future impacts of climate and land use change on streamflow in the middle reaches of China's Yellow River
    Ma, Xiaoni
    Li, Zhanbin
    Ren, Zongping
    Shen, Zhenzhou
    Xu, Guoce
    Xie, Mengyao
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 370
  • [10] Impacts of Climate Change on Water Resources in the Yellow River Basin
    Yangwen, Jia
    Yaqin, Qiu
    Hui, Gao
    Cunwen, Niu
    Suhui, Shen
    Hui, Peng
    Weigang, Liu
    PROCEEDINGS OF THE 3RD INTERNATIONAL YELLOW RIVER FORUM ON SUSTAINABLE WATER RESOURCES MANAGEMENT AND DELTA ECOSYSTEM MAINTENANCE, VOL I, 2007, : 109 - 119