A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows

被引:17
作者
Figueroa, Leonardo E. [2 ]
Gatica, Gabriel N. [1 ,2 ]
Heuer, Norbert [3 ]
机构
[1] Univ Concepcion, CI2MA, Concepcion, Chile
[2] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[3] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
关键词
Mixed finite element; Incompressible flow; A posteriori error estimator;
D O I
10.1016/j.cma.2008.07.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we extend recent results on the a priori and a posteriori error analysis of an augmented mixed finite element method for the linear elasticity problem, to the case of incompressible fluid flows with symmetric stress tensor. Similarly as before, the present approach is based on the introduction of the Galerkin least-squares type terms arising from the constitutive and equilibrium equations, and from the relations defining the pressure in terms of the stress tensor and the rotation in terms of the displacement, all of them multiplied by stabilization parameters. We show that these parameters can be suitably chosen so that the resulting augmented variational formulation is defined by a strongly coercive bilinear form, whence the associated Galerkin scheme becomes well-posed for any choice of finite element sub-spaces. Next, we present a reliable and efficient residual-based a posteriori error estimator for the augmented mixed finite element scheme. Finally, several numerical results confirming the theoretical properties of this estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities and the large stress regions of the solution, are reported. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 26 条
[1]  
Arnold D., 1984, Jpn. J. Appl. Math., V1, P347, DOI [/10.1007/BF03167064, DOI 10.1007/BF03167064]
[2]  
Arnold D., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
[3]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[4]   A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate [J].
Barrientos, MA ;
Gatica, GN ;
Stephan, EP .
NUMERISCHE MATHEMATIK, 2002, 91 (02) :197-222
[5]   A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity [J].
Barrios, Tomas P. ;
Gatica, Gabriel N. ;
Gonzalez, Maria ;
Heuer, Norbert .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05) :843-869
[6]   STABILIZED MIXED METHODS FOR THE STOKES PROBLEM [J].
BREZZI, F ;
DOUGLAS, J .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :225-235
[7]  
Brezzi F, 2001, NUMER MATH, V89, P457, DOI 10.1007/s002110100258
[8]   MIXED FINITE-ELEMENT METHODS WITH CONTINUOUS STRESSES [J].
BREZZI, F ;
FORTIN, M ;
MARINI, LD .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1993, 3 (02) :275-287
[9]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[10]   A posteriori error estimates for mixed FEM in elasticity [J].
Carstensen, C ;
Dolzmann, G .
NUMERISCHE MATHEMATIK, 1998, 81 (02) :187-209