Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure

被引:59
作者
Davidson, Michael T. [1 ,2 ,4 ]
Grimsrud, Paul A. [1 ,2 ]
Lai, Ling [7 ,8 ]
Draper, James A. [1 ,2 ]
Fisher-Wellman, Kelsey H. [1 ,2 ]
Narowski, Tara M. [1 ,2 ]
Abraham, Dennis M. [5 ,6 ]
Koves, Timothy R. [1 ,2 ]
Kelly, Daniel P. [7 ,8 ]
Muoio, Deborah M. [1 ,2 ,3 ,4 ]
机构
[1] Duke Univ, Duke Mol Physiol Inst, Med Ctr, 300 N Duke St, Durham, NC 27701 USA
[2] Duke Univ, Sarah W Stedman Nutr & Metab Ctr, Med Ctr, Durham, NC 27701 USA
[3] Duke Univ, Dept Med, Div Endocrinol Metab & Nutr, Durham, NC 27701 USA
[4] Duke Univ, Dept Pharmacol & Canc Biol, Med Ctr, Durham, NC 27701 USA
[5] Dept Med, Div Cardiol, Durham, NC USA
[6] Duke Cardiovasc Physiol Core, Durham, NC USA
[7] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Dept Med, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
energy metabolism; heart; heart failure; mitochondria; proteomics; ATP HYDROLYSIS EQUILIBRIA; SKELETAL-MUSCLE; LYSINE ACETYLATION; INSULIN-RESISTANCE; PRESSURE-OVERLOAD; ADENYLATE KINASE; CREATINE-KINASE; FAILING HEART; SIRT3; MODEL;
D O I
10.1161/CIRCRESAHA.120.317293
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rationale: Circumstantial evidence links the development of heart failure to posttranslational modifications of mitochondrial proteins, including lysine acetylation (Kac). Nonetheless, direct evidence that Kac compromises mitochondrial performance remains sparse. Objective: This study sought to explore the premise that mitochondrial Kac contributes to heart failure by disrupting oxidative metabolism. Methods and Results: A DKO (dual knockout) mouse line with deficiencies in CrAT (carnitine acetyltransferase) and Sirt3 (sirtuin 3)-enzymes that oppose Kac by buffering the acetyl group pool and catalyzing lysine deacetylation, respectively-was developed to model extreme mitochondrial Kac in cardiac muscle, as confirmed by quantitative acetyl-proteomics. The resulting impact on mitochondrial bioenergetics was evaluated using a respiratory diagnostics platform that permits comprehensive assessment of mitochondrial function and energy transduction. Susceptibility of DKO mice to heart failure was investigated using transaortic constriction as a model of cardiac pressure overload. The mitochondrial acetyl-lysine landscape of DKO hearts was elevated well beyond that observed in response to pressure overload or Sirt3 deficiency alone. Relative changes in the abundance of specific acetylated lysine peptides measured in DKO versus Sirt3 KO hearts were strongly correlated. A proteomics comparison across multiple settings of hyperacetylation revealed approximate to 86% overlap between the populations of Kac peptides affected by the DKO manipulation as compared with experimental heart failure. Despite the severity of cardiac Kac in DKO mice relative to other conditions, deep phenotyping of mitochondrial function revealed a surprisingly normal bioenergetics profile. Thus, of the >120 mitochondrial energy fluxes evaluated, including substrate-specific dehydrogenase activities, respiratory responses, redox charge, mitochondrial membrane potential, and electron leak, we found minimal evidence of oxidative insufficiencies. Similarly, DKO hearts were not more vulnerable to dysfunction caused by transaortic constriction-induced pressure overload. Conclusions: The findings challenge the premise that hyperacetylation per se threatens metabolic resilience in the myocardium by causing broad-ranging disruption to mitochondrial oxidative machinery.
引用
收藏
页码:1094 / 1108
页数:15
相关论文
共 50 条
  • [21] Alterations in mitochondrial function in cardiac hypertrophy and heart failure
    Moritz Osterholt
    T. Dung Nguyen
    Michael Schwarzer
    Torsten Doenst
    Heart Failure Reviews, 2013, 18 : 645 - 656
  • [22] Mitochondrial pathology in cardiac failure
    Marin-Garcia, J
    Goldenthal, MJ
    Moe, GW
    CARDIOVASCULAR RESEARCH, 2001, 49 (01) : 17 - 26
  • [23] Mitochondrial function in heart failure
    Schulze K.
    Dörner A.
    Schultheiß H.-P.
    Heart Failure Reviews, 1999, 4 (3) : 229 - 244
  • [24] Methylene blue decreases mitochondrial lysine acetylation in the diabetic heart
    Berthiaume, Jessica
    Hsiung, Chia-heng
    Austin, Alison B.
    McBrayer, Sean P.
    Depuydt, Mikayla M.
    Chandler, Margaret P.
    Miyagi, Masaru
    Rosca, Mariana G.
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2017, 432 (1-2) : 7 - 24
  • [25] Stimulating mitochondrial insulin signalling enhances cardiac function and energy metabolism in heart failure
    Karwi, Qutuba
    Wong, Angela
    Makassy, Dorcus
    CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 2024, 102 (10)
  • [26] Roles of histone acetylation sites in cardiac hypertrophy and heart failure
    Funamoto, Masafumi
    Imanishi, Masaki
    Tsuchiya, Koichiro
    Ikeda, Yasumasa
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [27] Mitochondrial Dynamics: a Potential New Therapeutic Target for Heart Failure
    Kuzmicic, Jovan
    del Campo, Andrea
    Lopez-Crisosto, Camila
    Morales, Pablo E.
    Pennanen, Christian
    Bravo-Sagua, Roberto
    Hechenleitner, Jonathan
    Zepeda, Ramiro
    Castro, Pablo F.
    Verdejo, Hugo E.
    Parra, Valentina
    Chiong, Mario
    Lavandero, Sergio
    REVISTA ESPANOLA DE CARDIOLOGIA, 2011, 64 (10): : 916 - 923
  • [28] Rescue of Heart Failure by Mitochondrial Recovery
    Marquez, Jubert
    Lee, Sung Ryul
    Kim, Nari
    Han, Jin
    INTERNATIONAL NEUROUROLOGY JOURNAL, 2016, 20 (01) : 5 - 12
  • [29] A Mitochondrial Basis for Heart Failure Progression
    Watson, William D.
    Arvidsson, Per M.
    Miller, Jack J. J.
    Lewis, Andrew J.
    Rider, Oliver J.
    CARDIOVASCULAR DRUGS AND THERAPY, 2024, : 1161 - 1171
  • [30] Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity
    Shekar, Kadambari Chandra
    Li, Ling
    Dabkowski, Erinne R.
    Xu, Wenhong
    Ribeiro, Rogerio Faustino, Jr.
    Hecker, Peter A.
    Recchia, Fabio A.
    Sadygov, Rovshan G.
    Willard, Belinda
    Kasumov, Takhar
    Stanley, William C.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2014, 75 : 88 - 97