Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure

被引:59
|
作者
Davidson, Michael T. [1 ,2 ,4 ]
Grimsrud, Paul A. [1 ,2 ]
Lai, Ling [7 ,8 ]
Draper, James A. [1 ,2 ]
Fisher-Wellman, Kelsey H. [1 ,2 ]
Narowski, Tara M. [1 ,2 ]
Abraham, Dennis M. [5 ,6 ]
Koves, Timothy R. [1 ,2 ]
Kelly, Daniel P. [7 ,8 ]
Muoio, Deborah M. [1 ,2 ,3 ,4 ]
机构
[1] Duke Univ, Duke Mol Physiol Inst, Med Ctr, 300 N Duke St, Durham, NC 27701 USA
[2] Duke Univ, Sarah W Stedman Nutr & Metab Ctr, Med Ctr, Durham, NC 27701 USA
[3] Duke Univ, Dept Med, Div Endocrinol Metab & Nutr, Durham, NC 27701 USA
[4] Duke Univ, Dept Pharmacol & Canc Biol, Med Ctr, Durham, NC 27701 USA
[5] Dept Med, Div Cardiol, Durham, NC USA
[6] Duke Cardiovasc Physiol Core, Durham, NC USA
[7] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Dept Med, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
energy metabolism; heart; heart failure; mitochondria; proteomics; ATP HYDROLYSIS EQUILIBRIA; SKELETAL-MUSCLE; LYSINE ACETYLATION; INSULIN-RESISTANCE; PRESSURE-OVERLOAD; ADENYLATE KINASE; CREATINE-KINASE; FAILING HEART; SIRT3; MODEL;
D O I
10.1161/CIRCRESAHA.120.317293
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rationale: Circumstantial evidence links the development of heart failure to posttranslational modifications of mitochondrial proteins, including lysine acetylation (Kac). Nonetheless, direct evidence that Kac compromises mitochondrial performance remains sparse. Objective: This study sought to explore the premise that mitochondrial Kac contributes to heart failure by disrupting oxidative metabolism. Methods and Results: A DKO (dual knockout) mouse line with deficiencies in CrAT (carnitine acetyltransferase) and Sirt3 (sirtuin 3)-enzymes that oppose Kac by buffering the acetyl group pool and catalyzing lysine deacetylation, respectively-was developed to model extreme mitochondrial Kac in cardiac muscle, as confirmed by quantitative acetyl-proteomics. The resulting impact on mitochondrial bioenergetics was evaluated using a respiratory diagnostics platform that permits comprehensive assessment of mitochondrial function and energy transduction. Susceptibility of DKO mice to heart failure was investigated using transaortic constriction as a model of cardiac pressure overload. The mitochondrial acetyl-lysine landscape of DKO hearts was elevated well beyond that observed in response to pressure overload or Sirt3 deficiency alone. Relative changes in the abundance of specific acetylated lysine peptides measured in DKO versus Sirt3 KO hearts were strongly correlated. A proteomics comparison across multiple settings of hyperacetylation revealed approximate to 86% overlap between the populations of Kac peptides affected by the DKO manipulation as compared with experimental heart failure. Despite the severity of cardiac Kac in DKO mice relative to other conditions, deep phenotyping of mitochondrial function revealed a surprisingly normal bioenergetics profile. Thus, of the >120 mitochondrial energy fluxes evaluated, including substrate-specific dehydrogenase activities, respiratory responses, redox charge, mitochondrial membrane potential, and electron leak, we found minimal evidence of oxidative insufficiencies. Similarly, DKO hearts were not more vulnerable to dysfunction caused by transaortic constriction-induced pressure overload. Conclusions: The findings challenge the premise that hyperacetylation per se threatens metabolic resilience in the myocardium by causing broad-ranging disruption to mitochondrial oxidative machinery.
引用
收藏
页码:1094 / 1108
页数:15
相关论文
共 50 条
  • [1] Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure
    Dey, Swati
    DeMazumder, Deeptankar
    Sidor, Agnieszka
    Foster, D. Brian
    O'Rourke, Brian
    CIRCULATION RESEARCH, 2018, 123 (03) : 356 - 371
  • [2] Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy
    Krishnan, Karthickeyan Chella
    El Hachem, Elie-Julien
    Keller, Mark
    Patel, Sanjeet G.
    Carroll, Luke
    Vegas, Alexis Diaz
    Gyuricza, Isabela Gerdes
    Light, Christine
    Cao, Yang
    Pan, Calvin
    Kaczor-Urbanowicz, Karolina Elzbieta
    Shravah, Varun
    Anum, Diana
    Pellegrini, Matteo
    Lee, Chi Fung
    Seldin, Marcus M.
    Rosenthal, Nadia A.
    Churchill, Gary A.
    Attie, Alan
    Parker, Benjamin
    James, David E.
    Lusis, Aldons J.
    ELIFE, 2023, 12
  • [3] Mitochondrial proteome remodeling in ischemic heart failure
    Liu, Tingting
    Chen, Le
    Kim, Eunjung
    Tran, Diana
    Phinney, Brett S.
    Knowlton, Anne A.
    LIFE SCIENCES, 2014, 101 (1-2) : 27 - 36
  • [4] Alterations in the heart mitochondrial proteome in a desmin null heart failure model
    Fountoulakis, M
    Soumaka, E
    Rapti, K
    Mavroidis, M
    Tsangaris, G
    Maris, A
    Weisleder, N
    Capetanaki, Y
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2005, 38 (03) : 461 - 474
  • [5] Effects of cardiac resynchronization therapy on the mitochondrial sub-proteome in a canine model of heart failure
    Agnetti, G.
    Elliott, S.
    Kane, L.
    Yung, C.
    Chakir, K.
    Samantapudi, D.
    Guamieri, C.
    Caldarera, C. M.
    Kass, D.
    Van Eyk, J. E.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2007, 42 : S159 - S159
  • [6] Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure
    Fukushima, Arata
    Lopaschuk, Gary D.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2016, 1862 (12): : 2211 - 2220
  • [7] Alterations in mitochondrial function in cardiac hypertrophy and heart failure
    Osterholt, Moritz
    Nguyen, T. Dung
    Schwarzer, Michael
    Doenst, Torsten
    HEART FAILURE REVIEWS, 2013, 18 (05) : 645 - 656
  • [8] Mitochondrion as a Target for Heart Failure Therapy - Role of Protein Lysine Acetylation
    Lee, Chi Fung
    Tian, Rong
    CIRCULATION JOURNAL, 2015, 79 (09) : 1863 - 1870
  • [9] Mitochondrial dysfunction in heart failure
    Rosca, Mariana G.
    Hoppel, Charles L.
    HEART FAILURE REVIEWS, 2013, 18 (05) : 607 - 622
  • [10] Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress
    Dai, Dao-Fu
    Hsieh, Edward J.
    Liu, Yonggang
    Chen, Tony
    Beyer, Richard P.
    Chin, Michael T.
    MacCoss, Michael J.
    Rabinovitch, Peter S.
    CARDIOVASCULAR RESEARCH, 2012, 93 (01) : 79 - 88