ADAPTIVE MESH RECONSTRUCTION FOR HYPERBOLIC CONSERVATION LAWS WITH TOTAL VARIATION BOUND

被引:0
作者
Sfakianakis, Nikolaos [1 ]
机构
[1] Univ Vienna, A-1010 Vienna, Austria
关键词
FINITE-ELEMENT SCHEMES; GRIDS; STABILITY; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider 3-point numerical schemes, that resolve scalar conservation laws, that are oscillatory either to their dispersive or anti-diffusive nature. The spatial discretization is performed over non-uniform adaptively redefined meshes. We provide a model for studying the evolution of the extremes of the oscillations. We prove that proper mesh reconstruction is able to control the oscillations; we provide bounds for the Total Variation (TV) of the numerical solution. We, moreover, prove under more strict assumptions that the increase of the TV, due to the oscillatory behavior of the numerical schemes, decreases with time; hence proving that the overall scheme is TV Increase-Decreasing (TVI-D). We finally provide numerical evidence supporting the analytical results that exhibit the stabilization properties of the mesh adaptation technique.
引用
收藏
页码:129 / 151
页数:23
相关论文
共 19 条
[1]   Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws [J].
Arvanitis, C ;
Makridakis, C ;
Tzavaras, AE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1357-1393
[2]   Adaptive finite element relaxation schemes for hyperbolic conservation laws [J].
Arvanitis, C ;
Katsaounis, T ;
Makridakis, C .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01) :17-33
[3]   Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids [J].
Arvanitis, Ch. ;
Delis, A. I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (05) :1927-1956
[4]   Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws [J].
Arvanitis, Christos .
JOURNAL OF SCIENTIFIC COMPUTING, 2008, 34 (01) :1-25
[5]   ENTROPY CONSERVATIVE SCHEMES AND ADAPTIVE MESH SELECTION FOR HYPERBOLIC CONSERVATION LAWS [J].
Arvanitis, Christos ;
Makridakis, Charalambos ;
Sfakianakis, Nikolaos I. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (03) :383-404
[6]   SIMPLE ADAPTIVE GRIDS FOR 1-D INITIAL-VALUE PROBLEMS [J].
DORFI, EA ;
DRURY, LO .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (01) :175-195
[7]  
FORNBERG B, 1988, MATH COMPUT, V51, P699, DOI 10.1090/S0025-5718-1988-0935077-0
[8]   SELF-ADJUSTING GRID METHODS FOR ONE-DIMENSIONAL HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
HYMAN, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 50 (02) :235-269
[9]  
Huang W., 2010, ADAPTIVE MOVING MESH
[10]  
Kroener D., 1997, NUMERICAL SCHEMES CO