MIXMODULE: MIXED CNN KERNEL MODULE FOR MEDICAL IMAGE SEGMENTATION

被引:0
|
作者
Yu, Henry H. [1 ]
Feng, Xue [2 ]
Wang, Ziwen [3 ]
Sun, Hao [4 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Univ San Francisco, San Francisco, CA USA
[3] Boston Univ, Boston, MA 02215 USA
[4] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
关键词
Semantic segmentation; U-Net; R2U-Net; Attention U-Net; Mixed Kernels; VESSEL SEGMENTATION;
D O I
10.1109/isbi45749.2020.9098498
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Convolutional neural networks (CNNs) have been successfully applied to medical image classification, segmentation, and related tasks. Among the many CNNs architectures, U-Net and its improved versions based are widely used and achieve state-of-the-art performance these years. These improved architectures focus on structural improvements and the size of the convolution kernel is generally fixed. In this paper, we propose a module that combines the benefits of multiple kernel sizes and we apply the proposed module to U-Net and its variants. We test our module on three segmentation benchmark datasets and experimental results show significant improvement.
引用
收藏
页码:1508 / 1512
页数:5
相关论文
共 50 条
  • [41] Unified semantic model for medical image segmentation
    Yuan, Shuai
    Yin, Jianjian
    Li, Runcheng
    Chen, Yi
    Zhang, Yudong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 98
  • [42] A Novel Elastomeric UNet for Medical Image Segmentation
    Cai, Sijing
    Wu, Yi
    Chen, Guannan
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [43] Improved UNet with Attention for Medical Image Segmentation
    AL Qurri, Ahmed
    Almekkawy, Mohamed
    SENSORS, 2023, 23 (20)
  • [44] MFH-Net: A Hybrid CNN-Transformer Network Based Multi-Scale Fusion for Medical Image Segmentation
    Wang, Ying
    Zhang, Meng
    Liang, Jian'an
    Liang, Meiyan
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (06)
  • [45] Segmentation ability map: Interpret deep features for medical image segmentation
    He, Sheng
    Feng, Yanfang
    Grant, P. Ellen
    Ou, Yangming
    MEDICAL IMAGE ANALYSIS, 2023, 84
  • [46] DGFormer: A Dynamic Kernel with Gaussian Fusion Transformer for Semantic Image Segmentation
    Yang, Haoran
    Tang, Longyi
    Wu, Tingting
    Yan, Binyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT III, 2024, 15018 : 17 - 30
  • [47] PS5-Net: a medical image segmentation network with multiscale resolution
    Li, Fuchen
    Liu, Yong
    Qi, Jianbo
    Du, Yansong
    Wang, Qingyue
    Ma, Wenbo
    Xu, Xianchong
    Zhang, Zhongqi
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (01)
  • [48] Vessels Segmentation Base on Mixed Filter for Retinal Image
    Dong, Heng
    Wei, Lifang
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 187 - 191
  • [49] DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation
    Jha, Debesh
    Riegler, Michael A.
    Johansen, Dag
    Halvorsen, Pal
    Johansen, Havard D.
    2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 558 - 564
  • [50] FOCUSNET: AN ATTENTION -BASED FULLY CONVOLUTIONA NE ORK FOR MEDICAL IMAGE SEGMENTATION
    Kaul, Chaitanya
    Manandhar, Suresh
    Pears, Nick
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 455 - 458