MIXMODULE: MIXED CNN KERNEL MODULE FOR MEDICAL IMAGE SEGMENTATION

被引:0
|
作者
Yu, Henry H. [1 ]
Feng, Xue [2 ]
Wang, Ziwen [3 ]
Sun, Hao [4 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Univ San Francisco, San Francisco, CA USA
[3] Boston Univ, Boston, MA 02215 USA
[4] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
关键词
Semantic segmentation; U-Net; R2U-Net; Attention U-Net; Mixed Kernels; VESSEL SEGMENTATION;
D O I
10.1109/isbi45749.2020.9098498
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Convolutional neural networks (CNNs) have been successfully applied to medical image classification, segmentation, and related tasks. Among the many CNNs architectures, U-Net and its improved versions based are widely used and achieve state-of-the-art performance these years. These improved architectures focus on structural improvements and the size of the convolution kernel is generally fixed. In this paper, we propose a module that combines the benefits of multiple kernel sizes and we apply the proposed module to U-Net and its variants. We test our module on three segmentation benchmark datasets and experimental results show significant improvement.
引用
收藏
页码:1508 / 1512
页数:5
相关论文
共 50 条
  • [21] UniverSeg: Universal Medical Image Segmentation
    Butoi, Victor Ion
    Ortiz, Jose Javier Gonzalez
    Ma, Tianyu
    Sabuncu, Mert R.
    Guttag, John
    Dalca, Adrian V.
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21381 - 21394
  • [22] A review of medical ocular image segmentation
    WEI L.
    HU M.
    Virtual Reality and Intelligent Hardware, 2024, 6 (03): : 181 - 202
  • [23] Efficient CNN-CRF Network for Retinal Image Segmentation
    Luo, Yuansheng
    Yang, Lu
    Wang, Ling
    Cheng, Hong
    COGNITIVE SYSTEMS AND SIGNAL PROCESSING, ICCSIP 2016, 2017, 710 : 157 - 165
  • [24] Modified U-Net for cytological medical image segmentation
    Benazzouz, Mourtada
    Benomar, Mohammed Lamine
    Moualek, Youcef
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (05) : 1761 - 1773
  • [25] Current and Emerging Trends in Medical Image Segmentation With Deep Learning
    Conze, Pierre-Henri
    Andrade-Miranda, Gustavo
    Singh, Vivek Kumar
    Jaouen, Vincent
    Visvikis, Dimitris
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (06) : 545 - 569
  • [26] Windowed axial shuffle attention networks for medical image segmentation
    Yi, Yugen
    Wu, Xuan
    He, Yi
    Wu, Han
    Zhou, Bin
    Luo, Siwei
    Dai, Jiangyan
    Du, Yingkui
    Zhou, Wei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [27] AUTOMATED OBJECT LABELING FOR CNN-BASED IMAGE SEGMENTATION
    Novozamsky, A.
    Vit, D.
    Sroubek, F.
    Franc, J.
    Krbalek, M.
    Bilkova, Z.
    Zitova, B.
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2036 - 2040
  • [28] Feature-guided attention network for medical image segmentation
    Zhou, Hao
    Sun, Chaoyu
    Huang, Hai
    Fan, Mingyu
    Yang, Xu
    Zhou, Linxiao
    MEDICAL PHYSICS, 2023, 50 (08) : 4871 - 4886
  • [29] Advantages of transformer and its application for medical image segmentation: a survey
    Pu, Qiumei
    Xi, Zuoxin
    Yin, Shuai
    Zhao, Zhe
    Zhao, Lina
    BIOMEDICAL ENGINEERING ONLINE, 2024, 23 (01)
  • [30] Deep Neural Architectures for Medical Image Semantic Segmentation: Review
    Khan, Muhammad Zubair
    Gajendran, Mohan Kumar
    Lee, Yugyung
    Khan, Muazzam A.
    IEEE ACCESS, 2021, 9 : 83002 - 83024