On the choice of preconditioner for minimum residual methods for non-Hermitian matrices

被引:13
作者
Pestana, Jennifer [1 ]
Wathen, Andrew J. [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
GMRES; Nonstandard inner product; Non-Hermitian matrices; Preconditioning; CIRCULANT PRECONDITIONER; CONVERGENCE; GMRES; SYSTEMS; ALGORITHMS; LANCZOS;
D O I
10.1016/j.cam.2013.02.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the solution of left preconditioned linear systems P(-1)Cx = Pc, where P. C epsilon C-nxn are non-Hermitian, c epsilon C-n, and C, P, and P-1C are diagonalisable with spectra symmetric about the real line. We prove that, when P and C are self-adjoint with respect to the same Hermitian sesquilinear form, the convergence of a minimum residual method in a particular nonstandard inner product applied to the preconditioned linear system is bounded by a term that depends only on the spectrum of P-1C. The inner product is related to the spectral decomposition of P. When P is self-adjoint with respect to a nearby Hermitian sesquilinear form to C, the convergence of a minimum residual method in this nonstandard inner product applied to the preconditioned linear system is bounded by a term involving the eigenvalues of P-1C and a constant factor. The size of this factor is related to the nearness of the Hermitian sesquilinear forms. Numerical experiments indicate that for certain matrices eigenvalue-dependent convergence is observed both for the nonstandard method and for standard GMRES. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 47 条
  • [1] Krylov sequences of maximal length and convergence of GMRES
    Arioli, M
    Pták, V
    Strakos, Z
    [J]. BIT, 1998, 38 (04): : 636 - 643
  • [2] A TAXONOMY FOR CONJUGATE-GRADIENT METHODS
    ASHBY, SF
    MANTEUFFEL, TA
    SAYLOR, PE
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) : 1542 - 1568
  • [3] The role of the inner product in stopping criteria for conjugate gradient iterations
    Ashby, SF
    Holst, MJ
    Manteuffel, TA
    Saylor, PE
    [J]. BIT, 2001, 41 (01): : 26 - 52
  • [4] Some remarks on the Elman estimate for GMRES
    Beckermann, B
    Gereinov, SA
    Tyrtyshnikov, EE
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (03) : 772 - 778
  • [5] On the eigenvalues of a class of saddle point matrices
    Benzi, M
    Simoncini, V
    [J]. NUMERISCHE MATHEMATIK, 2006, 103 (02) : 173 - 196
  • [6] Chan R.H., 2007, INTRO ITERATIVE TOEP
  • [7] AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS
    CHAN, TF
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04): : 766 - 771
  • [8] The importance of eigenvectors for local preconditioners of the Euler equations
    Darmofal, DL
    Schmid, PJ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (02) : 346 - 362
  • [9] The University of Florida Sparse Matrix Collection
    Davis, Timothy A.
    Hu, Yifan
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01):
  • [10] From potential theory to matrix iterations in six steps
    Driscoll, TA
    Toh, KC
    Trefethen, LN
    [J]. SIAM REVIEW, 1998, 40 (03) : 547 - 578