On the choice of preconditioner for minimum residual methods for non-Hermitian matrices

被引:13
作者
Pestana, Jennifer [1 ]
Wathen, Andrew J. [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
GMRES; Nonstandard inner product; Non-Hermitian matrices; Preconditioning; CIRCULANT PRECONDITIONER; CONVERGENCE; GMRES; SYSTEMS; ALGORITHMS; LANCZOS;
D O I
10.1016/j.cam.2013.02.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the solution of left preconditioned linear systems P(-1)Cx = Pc, where P. C epsilon C-nxn are non-Hermitian, c epsilon C-n, and C, P, and P-1C are diagonalisable with spectra symmetric about the real line. We prove that, when P and C are self-adjoint with respect to the same Hermitian sesquilinear form, the convergence of a minimum residual method in a particular nonstandard inner product applied to the preconditioned linear system is bounded by a term that depends only on the spectrum of P-1C. The inner product is related to the spectral decomposition of P. When P is self-adjoint with respect to a nearby Hermitian sesquilinear form to C, the convergence of a minimum residual method in this nonstandard inner product applied to the preconditioned linear system is bounded by a term involving the eigenvalues of P-1C and a constant factor. The size of this factor is related to the nearness of the Hermitian sesquilinear forms. Numerical experiments indicate that for certain matrices eigenvalue-dependent convergence is observed both for the nonstandard method and for standard GMRES. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 47 条
[1]   Krylov sequences of maximal length and convergence of GMRES [J].
Arioli, M ;
Pták, V ;
Strakos, Z .
BIT, 1998, 38 (04) :636-643
[2]   A TAXONOMY FOR CONJUGATE-GRADIENT METHODS [J].
ASHBY, SF ;
MANTEUFFEL, TA ;
SAYLOR, PE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1542-1568
[3]   The role of the inner product in stopping criteria for conjugate gradient iterations [J].
Ashby, SF ;
Holst, MJ ;
Manteuffel, TA ;
Saylor, PE .
BIT, 2001, 41 (01) :26-52
[4]   Some remarks on the Elman estimate for GMRES [J].
Beckermann, B ;
Gereinov, SA ;
Tyrtyshnikov, EE .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (03) :772-778
[5]   On the eigenvalues of a class of saddle point matrices [J].
Benzi, M ;
Simoncini, V .
NUMERISCHE MATHEMATIK, 2006, 103 (02) :173-196
[6]  
Chan R.H., 2007, INTRO ITERATIVE TOEP
[7]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771
[8]   The importance of eigenvectors for local preconditioners of the Euler equations [J].
Darmofal, DL ;
Schmid, PJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (02) :346-362
[9]   The University of Florida Sparse Matrix Collection [J].
Davis, Timothy A. ;
Hu, Yifan .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01)
[10]   From potential theory to matrix iterations in six steps [J].
Driscoll, TA ;
Toh, KC ;
Trefethen, LN .
SIAM REVIEW, 1998, 40 (03) :547-578