A spectral theory for small-amplitude miscible fingering

被引:73
作者
Ben, YX [1 ]
Demekhin, EA [1 ]
Chang, HC [1 ]
机构
[1] Univ Notre Dame, Dept Chem Engn, Notre Dame, IN 46556 USA
关键词
D O I
10.1063/1.1446885
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using the self-similar symmetry of a diffusing front, we develop a linear spectral theory for miscible fingering at inception that accurately captures the destabilization of localized disturbances (with large transverse wavelengths compared to the front width) by the unsteady front. Our theory predicts a generic selected wavelength (4pietaD/U-0 for gravity fingering, where eta is the transverse to longitudinal dispersion ratio, and an additional factor proportional to the logarithm of the mobility ratio for viscous fingering) at the small time of O(D/U-0(2)), where D is the dispersion coefficient or diffusivity in the flow direction and U-0 is the displacement velocity. This wavelength then grows in time and approaches a universal asymptotic wavelength coarsening dynamics of (eta(2)D(5)/U-0(2))(1/8)(t')(3/8), where t' is the dimensional time, for all small-amplitude miscible fingering phenomena in a slot or in porous media. The 3/8 exponent in time is due to a unique long-wave stabilization mechanism due to transverse convection, which escapes prior quasisteady theory. Explicit and generic scalings are then derived for gravity and viscous miscible fingering phenomena and are favorably compared to experimental and numerical results on linear coarsening dynamics. (C) 2002 American Institute of Physics.
引用
收藏
页码:999 / 1010
页数:12
相关论文
共 23 条
  • [1] DISPERSION OF CHEMICAL SOLUTES IN CHROMATOGRAPHS AND REACTORS
    BALAKOTAIAH, V
    CHANG, HC
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 351 (1695): : 39 - 75
  • [2] Barenblatt G, 1979, SIMILARITY SELF SIMI, DOI 10.1007/978-1-4615-8570-1
  • [3] Chang HC, 1998, SIAM J APPL MATH, V58, P1246
  • [4] INTERACTION DYNAMICS OF SOLITARY WAVES ON A FALLING FILM
    CHANG, HC
    DEMEKHIN, E
    KALAIDIN, E
    [J]. JOURNAL OF FLUID MECHANICS, 1995, 294 : 123 - 154
  • [5] A GENERALIZED SIDE-BAND STABILITY THEORY VIA CENTER MANIFOLD PROJECTION
    CHENG, M
    CHANG, HC
    [J]. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (08): : 1364 - 1379
  • [6] HICKERNELL FJ, 1986, STUD APPL MATH, V74, P93
  • [7] Hoffman RN., 1965, SOC PET ENG J, V5, P301, DOI DOI 10.2118/1229-PA
  • [8] VISCOUS FINGERING IN POROUS-MEDIA
    HOMSY, GM
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1987, 19 : 271 - 311
  • [9] MISCIBLE DISPLACEMENT IN A HELE-SHAW CELL
    HU, HH
    JOSEPH, DD
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (04): : 626 - 644
  • [10] JEFFEREY A, 2001, HDB MATH FORMULAS IN