Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE

被引:0
|
作者
Wang, Yuliang [1 ,2 ]
Eddy, James A. [1 ,3 ]
Price, Nathan D. [1 ,2 ]
机构
[1] Inst Syst Biol, Seattle, WA 98109 USA
[2] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
来源
BMC SYSTEMS BIOLOGY | 2012年 / 6卷
关键词
Automated metabolic network reconstruction; Brain; Cancer metabolism; Tissue-specific metabolic model; Constraint-based modeling; FATTY-ACID SYNTHESIS; RNA-SEQ; HEPATOCELLULAR-CARCINOMA; CANCER PATHOGENESIS; IN-VITRO; EXPRESSION; NETWORK; PHYSIOLOGY; PREDICTION; CELLS;
D O I
10.1186/1752-0509-6-153
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Human tissues perform diverse metabolic functions. Mapping out these tissue-specific functions in genome-scale models will advance our understanding of the metabolic basis of various physiological and pathological processes. The global knowledgebase of metabolic functions categorized for the human genome (Human Recon 1) coupled with abundant high-throughput data now makes possible the reconstruction of tissue-specific metabolic models. However, the number of available tissue-specific models remains incomplete compared with the large diversity of human tissues. Results: We developed a method called metabolic Context-specificity Assessed by Deterministic Reaction Evaluation (mCADRE). mCADRE is able to infer a tissue-specific network based on gene expression data and metabolic network topology, along with evaluation of functional capabilities during model building. mCADRE produces models with similar or better functionality and achieves dramatic computational speed up over existing methods. Using our method, we reconstructed draft genome-scale metabolic models for 126 human tissue and cell types. Among these, there are models for 26 tumor tissues along with their normal counterparts, and 30 different brain tissues. We performed pathway-level analyses of this large collection of tissue-specific models and identified the eicosanoid metabolic pathway, especially reactions catalyzing the production of leukotrienes from arachidnoic acid, as potential drug targets that selectively affect tumor tissues. Conclusions: This large collection of 126 genome-scale draft metabolic models provides a useful resource for studying the metabolic basis for a variety of human diseases across many tissues. The functionality of the resulting models and the fast computational speed of the mCADRE algorithm make it a useful tool to build and update tissue-specific metabolic models.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Reconstruction of genome-scale human metabolic models using omics data
    Ryu, Jae Yong
    Kim, Hyun Uk
    Lee, Sang Yup
    INTEGRATIVE BIOLOGY, 2015, 7 (08) : 859 - 868
  • [2] Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases
    Kishk, Ali
    Pacheco, Maria Pires
    Heurtaux, Tony
    Sinkkonen, Lasse
    Pang, Jun
    Fritah, Sabrina
    Niclou, Simone P.
    Sauter, Thomas
    CELLS, 2022, 11 (16)
  • [3] Genome-scale metabolic models applied to human health and disease
    Cook, Daniel J.
    Nielsen, Jens
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2017, 9 (06)
  • [4] Plant genome-scale metabolic reconstruction and modelling
    Dal'Molin, Cristiana Gomes de Oliveira
    Nielsen, Lars Keld
    CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 (02) : 271 - 277
  • [5] Recent advances in reconstruction and applications of genome-scale metabolic models
    Kim, Tae Yong
    Sohn, Seung Bum
    Kim, Yu Bin
    Kim, Won Jun
    Lee, Sang Yup
    CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (04) : 617 - 623
  • [6] Genome-scale metabolic models applied for human health and biopharmaceutical engineering
    Li, Feiran
    Chen, Yu
    Gustafsson, Johan
    Wang, Hao
    Wang, Yi
    Zhang, Chong
    Xing, Xinhui
    QUANTITATIVE BIOLOGY, 2023, 11 (04) : 363 - 375
  • [7] Genome-scale metabolic reconstruction and analysis for Clostridium kluyveri
    Zou, Wei
    Ye, Guangbin
    Zhang, Jing
    Zhao, Changqing
    Zhao, Xingxiu
    Zhang, Kaizheng
    GENOME, 2018, 61 (08) : 605 - 613
  • [8] Leveraging genome-scale metabolic models for human health applications
    Chowdhury, Shomeek
    Fong, Stephen S.
    CURRENT OPINION IN BIOTECHNOLOGY, 2020, 66 : 267 - 276
  • [9] Reconstruction of tissue-specific genome-scale metabolic models for human cancer stem cells
    Barata, Tania
    Vieira, Vitor
    Rodrigues, Ruben
    das Neves, Ricardo Pires
    Rocha, Miguel
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142
  • [10] Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models
    Devika, N. T.
    Raman, Karthik
    SCIENTIFIC REPORTS, 2019, 9 (1)