Casting of Gold Nanoparticles with High Aspect Ratios inside DNA Molds

被引:19
作者
Ye, Jingjing [1 ,2 ]
Weichelt, Richard [1 ,2 ,3 ,4 ]
Kemper, Ulrich [1 ,2 ]
Gupta, Vaibhav [5 ]
Koenig, Tobias A. F. [5 ]
Eychmueller, Alexander [3 ,4 ]
Seidel, Ralf [1 ,2 ]
机构
[1] Univ Leipzig, Mol Biophys Grp, Peter Debye Inst Soft Matter Phys, D-04103 Leipzig, Germany
[2] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Phys Chem, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
[5] Leibniz Inst Polymerforsch Dresden eV, Inst Phys Chem & Polymer Phys, Hohe Str 6, D-01069 Dresden, Germany
关键词
bottom-up; DNA origami; gold nanoparticles; metallization; nanoelectronics; ORIGAMI; NANOTECHNOLOGY;
D O I
10.1002/smll.202003662
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here this approach is extended to synthesize rod-like gold nanoparticles in a full DNA controlled manner. The approach is based on DNA molds containing elongated cavities. Gold is deposited inside the molds using a seeded-growth procedure. By carefully exploring the growth parameters it is shown that gold nanostructures with aspect ratios of up to 7 can be grown from single seeds. The highly anisotropic growth is in this case controlled only by the rather soft and porous DNA walls. The optimized seeded growth procedure provides a robust and simple routine to achieve continuous gold nanostructures using DNA templating.
引用
收藏
页数:6
相关论文
共 32 条
  • [11] Multilayer DNA Origami Packed on a Square Lattice
    Ke, Yonggang
    Douglas, Shawn M.
    Liu, Minghui
    Sharma, Jaswinder
    Cheng, Anchi
    Leung, Albert
    Liu, Yan
    Shih, William M.
    Yan, Hao
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (43) : 15903 - 15908
  • [12] Defining Rules for the Shape Evolution of Gold Nanoparticles
    Langille, Mark R.
    Personick, Michelle L.
    Zhang, Jian
    Mirkin, Chad A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (35) : 14542 - 14554
  • [13] Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication
    Liu, Jianfei
    Geng, Yanli
    Pound, Elisabeth
    Gyawali, Shailendra
    Ashton, Jeffrey R.
    Hickey, John
    Woolley, Adam T.
    Harb, John N.
    [J]. ACS NANO, 2011, 5 (03) : 2240 - 2247
  • [14] DNA-Assembled Advanced Plasmonic Architectures
    Liu, Na
    Liedl, Tim
    [J]. CHEMICAL REVIEWS, 2018, 118 (06) : 3032 - 3053
  • [15] Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials
    Ma, Yurou
    Yang, Xiangdong
    Wei, Yurong
    Yuan, Quan
    [J]. CHINESE JOURNAL OF CHEMISTRY, 2016, 34 (03) : 291 - 298
  • [16] Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community
    Mathur, Divita
    Medintz, Igor L.
    [J]. ANALYTICAL CHEMISTRY, 2017, 89 (05) : 2646 - 2663
  • [17] DNA Origami Metallized Site Specifically to Form Electrically Conductive Nanowires
    Pearson, Anthony C.
    Liu, Jianfei
    Pound, Elisabeth
    Uprety, Bibek
    Woolley, Adam T.
    Davis, Robert C.
    Harb, John N.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (35) : 10551 - 10560
  • [18] Nanorattles with tailored electric field enhancement
    Schnepf, Max J.
    Mayer, Martin
    Kuttner, Christian
    Tebbe, Moritz
    Wolf, Daniel
    Dulle, Martin
    Altantzis, Thomas
    Formanek, Petr
    Foerster, Stephan
    Bals, Sara
    Koenig, Tobias A. F.
    Fery, Andreas
    [J]. NANOSCALE, 2017, 9 (27) : 9376 - 9385
  • [19] NUCLEIC-ACID JUNCTIONS AND LATTICES
    SEEMAN, NC
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1982, 99 (02) : 237 - 247
  • [20] Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions
    Stahl, Evi
    Martin, Thomas G.
    Praetorius, Florian
    Dietz, Hendrik
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (47) : 12735 - 12740