Casting of Gold Nanoparticles with High Aspect Ratios inside DNA Molds

被引:19
作者
Ye, Jingjing [1 ,2 ]
Weichelt, Richard [1 ,2 ,3 ,4 ]
Kemper, Ulrich [1 ,2 ]
Gupta, Vaibhav [5 ]
Koenig, Tobias A. F. [5 ]
Eychmueller, Alexander [3 ,4 ]
Seidel, Ralf [1 ,2 ]
机构
[1] Univ Leipzig, Mol Biophys Grp, Peter Debye Inst Soft Matter Phys, D-04103 Leipzig, Germany
[2] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Phys Chem, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
[5] Leibniz Inst Polymerforsch Dresden eV, Inst Phys Chem & Polymer Phys, Hohe Str 6, D-01069 Dresden, Germany
关键词
bottom-up; DNA origami; gold nanoparticles; metallization; nanoelectronics; ORIGAMI; NANOTECHNOLOGY;
D O I
10.1002/smll.202003662
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here this approach is extended to synthesize rod-like gold nanoparticles in a full DNA controlled manner. The approach is based on DNA molds containing elongated cavities. Gold is deposited inside the molds using a seeded-growth procedure. By carefully exploring the growth parameters it is shown that gold nanostructures with aspect ratios of up to 7 can be grown from single seeds. The highly anisotropic growth is in this case controlled only by the rather soft and porous DNA walls. The optimized seeded growth procedure provides a robust and simple routine to achieve continuous gold nanostructures using DNA templating.
引用
收藏
页数:6
相关论文
共 32 条
[11]   Multilayer DNA Origami Packed on a Square Lattice [J].
Ke, Yonggang ;
Douglas, Shawn M. ;
Liu, Minghui ;
Sharma, Jaswinder ;
Cheng, Anchi ;
Leung, Albert ;
Liu, Yan ;
Shih, William M. ;
Yan, Hao .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (43) :15903-15908
[12]   Defining Rules for the Shape Evolution of Gold Nanoparticles [J].
Langille, Mark R. ;
Personick, Michelle L. ;
Zhang, Jian ;
Mirkin, Chad A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (35) :14542-14554
[13]   Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication [J].
Liu, Jianfei ;
Geng, Yanli ;
Pound, Elisabeth ;
Gyawali, Shailendra ;
Ashton, Jeffrey R. ;
Hickey, John ;
Woolley, Adam T. ;
Harb, John N. .
ACS NANO, 2011, 5 (03) :2240-2247
[14]   DNA-Assembled Advanced Plasmonic Architectures [J].
Liu, Na ;
Liedl, Tim .
CHEMICAL REVIEWS, 2018, 118 (06) :3032-3053
[15]   Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials [J].
Ma, Yurou ;
Yang, Xiangdong ;
Wei, Yurong ;
Yuan, Quan .
CHINESE JOURNAL OF CHEMISTRY, 2016, 34 (03) :291-298
[16]   Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community [J].
Mathur, Divita ;
Medintz, Igor L. .
ANALYTICAL CHEMISTRY, 2017, 89 (05) :2646-2663
[17]   DNA Origami Metallized Site Specifically to Form Electrically Conductive Nanowires [J].
Pearson, Anthony C. ;
Liu, Jianfei ;
Pound, Elisabeth ;
Uprety, Bibek ;
Woolley, Adam T. ;
Davis, Robert C. ;
Harb, John N. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (35) :10551-10560
[18]   Nanorattles with tailored electric field enhancement [J].
Schnepf, Max J. ;
Mayer, Martin ;
Kuttner, Christian ;
Tebbe, Moritz ;
Wolf, Daniel ;
Dulle, Martin ;
Altantzis, Thomas ;
Formanek, Petr ;
Foerster, Stephan ;
Bals, Sara ;
Koenig, Tobias A. F. ;
Fery, Andreas .
NANOSCALE, 2017, 9 (27) :9376-9385
[19]   NUCLEIC-ACID JUNCTIONS AND LATTICES [J].
SEEMAN, NC .
JOURNAL OF THEORETICAL BIOLOGY, 1982, 99 (02) :237-247
[20]   Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions [J].
Stahl, Evi ;
Martin, Thomas G. ;
Praetorius, Florian ;
Dietz, Hendrik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (47) :12735-12740