Complexity of Positivstellensatz proofs for the knapsack

被引:56
作者
Grigoriev, D [1 ]
机构
[1] Univ Rennes 1, IRM, F-35042 Rennes, France
关键词
polynomial calculus; Positivstellensatz proofs; complexity of the knapsack;
D O I
10.1007/s00037-001-8192-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A lower bound is established on degrees of Positivstellensatz calculus refutations (over a real field) introduced in (Grigoriev . Vorobjov 2001; Grigoriev 2001) for the knapsack problem. The bound depends on the values of coefficients of an instance of the knapsack problem: for certain values the lower bound is linear and for certain values the upper bound is constant, while in the polynomial calculus the degree is always linear (regardless of the values of coefficients) (Impagliazzo et al. 1999). This shows that the Positivstellensatz calculus can be strictly stronger than the polynomial calculus from the point of view of the complexity of the proofs.
引用
收藏
页码:139 / 154
页数:16
相关论文
共 16 条
[1]  
Beame P, 1996, P LOND MATH SOC, V73, P1
[2]  
Bochnak J., 1998, Ergeb. Math. Grenzgeb., V36
[3]   Linear gaps between degrees for the polynomial calculus module distinct primes [J].
Buss, S ;
Grigoriev, D ;
Impagliazzo, R ;
Pitassi, T .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 62 (02) :267-289
[4]  
Buss S, 1997, COMPUT COMPLEX, V6, P256
[5]  
BUSS S, 1999, 31 ANN ACM S THEOR C, P547
[6]  
Clegg M., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P174, DOI 10.1145/237814.237860
[7]  
Grigoriev D, 2002, ANN PURE APPL LOGIC, V113, P153, DOI 10.1016/S0168-0072(01)00055-0
[8]   Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity [J].
Grigoriev, D .
THEORETICAL COMPUTER SCIENCE, 2001, 259 (1-2) :613-622
[9]   Tseitin's tautologies and lower bounds for Nullstellensatz proofs [J].
Grigoriev, D .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :648-652
[10]   Lower bounds for the polynomial calculus and the Grobner basis algorithm [J].
Impagliazzo, R ;
Pudlák, P ;
Sgall, J .
COMPUTATIONAL COMPLEXITY, 1999, 8 (02) :127-144