EXISTENCE OF INFINITELY MANY SMALL SOLUTIONS FOR SUBLINEAR FRACTIONAL KIRCHHOFF-SCHRODINGER-POISSON SYSTEMS

被引:0
作者
De Albuquerque, Jose Carlos [1 ]
Clemente, Rodrigo [2 ]
Ferraz, Diego [3 ]
机构
[1] Univ Fed Goias, Inst Math & Stat, BR-74001970 Goiania, Go, Brazil
[2] Rural Fed Univ Pernambuco, Dept Math, BR-52171900 Recife, Pernambuco, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Math, BR-59078970 Natal, RN, Brazil
关键词
Kirchhoff-Schrodinger-Poisson equation; fractional Laplacian; variational method; POSITIVE SOLUTIONS; EQUATIONS; MULTIPLICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Kirchhoff-Schrodinger-Poisson system m([u](alpha)(2))(-Delta)(alpha )u + V(x)u + k(x)phi u = f(x, u), x is an element of R-3, (-Delta)(beta)phi = k(x)u(2), x is an element of R-3, where [.](alpha) denotes the Gagliardo semi-norm, (-Delta)(alpha) denotes the fractional Laplacian operator with alpha, beta is an element of (0, 1], 4 alpha +2 beta >= 3 and m : [0, +infinity) -> [0, +infinity) is a Kirchhoff function satisfying suitable assumptions. The functions V(x) and k(x) are nonnegative and the nonlinear term f (x, s) satisfies certain local conditions. By using a variational approach, we use a Kajikiya's version of the symmetric mountain pass lemma and Moser iteration method to prove the existence of infinitely many small solutions.
引用
收藏
页数:16
相关论文
共 28 条
[1]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[2]   An existence result for a fractional Kirchhoff-Schrodinger-Poisson system [J].
Ambrosio, Vincenzo .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02)
[3]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062
[4]  
[Anonymous], ANN MAT PURA APPL, DOI DOI 10.1007/S102310200029
[5]  
[Anonymous], 1986, CBMS REG C SER MATH
[6]   Infinitely many small solutions for a sublinear Schrodinger-Poisson system with sign-changing potential [J].
Bao, Gui .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) :2082-2088
[7]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[8]   SCHRODINGER-KIRCHHOFF-POISSON TYPE SYSTEMS [J].
Batkam, Cyril Joel ;
Santos Junior, Joao R. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (02) :429-444
[9]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[10]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53