Cobalt Oxide Electrode Doped with Iridium Oxide as Highly Efficient Water Oxidation Electrode

被引:33
|
作者
Tae, Eunju Lee [1 ]
Song, Jihye [1 ]
Lee, A. Reum [1 ]
Kim, Caroline Hewon [1 ]
Yoon, Seokjun [1 ]
Hwang, In Chul [1 ]
Kim, Min Gyu [2 ]
Yoon, Kyung Byung [1 ]
机构
[1] Sogang Univ, Dept Chem, Seoul 04107, South Korea
[2] Pohang Univ Sci & Technol, PAL, Pohang 790784, Gyeongbuk, South Korea
来源
ACS CATALYSIS | 2015年 / 5卷 / 09期
基金
新加坡国家研究基金会;
关键词
water oxidation; crystalline cobalt oxide; crystalline iridium oxide; Tafel plot; XAS; EXAFS; oxygen vacancy; OXYGEN EVOLUTION REACTION; X-RAY-ABSORPTION; NEUTRAL PH; CATALYST; ELECTROCATALYSTS; NANOPARTICLES; PHOSPHATE; FILM; SPECTROSCOPY; MECHANISM;
D O I
10.1021/acscatal.5b00979
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystalline cobalt oxide nanoparticles (nc-CoOx) supported on ITO glass or Ni foam doped with 5 mol % crystalline iridium oxide nanoparticles (nc-IrOx) showed performances which are higher than those of nc-CoOx on ITO or Ni foam and nc-IrOx on a rotating glassy carbon disc electrode or Ni foam. The initial Co-III and Ir-IV become Co-IV and Ir-VI upon applying positive potentials. The nc-CoOx particles intrinsically carry (CoO5)-O-III centers which become (CoO6)-O-IV centers upon application of positive potentials. The O vacancy in (CoO5)-O-III is transferred to (IrO6)-O-VI upon application of positive potentials, giving rise to the formation of (IrO5)-O-VI centers, which are proposed to be the highly active catalytic centers for water oxidation.
引用
收藏
页码:5525 / 5529
页数:5
相关论文
共 50 条
  • [41] The Influence of Electrode Thickness on the Structure and Water Splitting Performance of Iridium Oxide Nanostructured Films
    Altowyan, Abeer S.
    Shaban, Mohamed
    Abdelkarem, Khaled
    El Sayed, Adel M.
    NANOMATERIALS, 2022, 12 (19)
  • [42] A sustainable and highly efficient photocatalytic and supercapacitor electrode for biogenic nickel oxide nanoparticle infused graphene oxide
    Kala, K.
    Padmasini, N.
    Harish, M. Neela
    Priyan, J. Shanmuga
    Siranjeevi, R.
    SURFACES AND INTERFACES, 2024, 49
  • [43] Highly sensitive electrochemical detection of iodate based on glassy carbon electrode modified with iridium oxide
    Lazarova, Yanna
    Shterev, Ivan
    Dodevska, Totka
    MONATSHEFTE FUR CHEMIE, 2018, 149 (11): : 1955 - 1962
  • [44] FLOW-INJECTION AMPEROMETRIC DETERMINATION OF HYDROGEN-PEROXIDE BY OXIDATION AT AN IRIDIUM OXIDE ELECTRODE
    COX, JA
    LEWINSKI, K
    TALANTA, 1993, 40 (12) : 1911 - 1915
  • [45] An improved method of preparing iridium oxide electrode based on carbonate-melt oxidation mechanism
    Pan, Yiwen
    Sun, Zhentao
    He, Hangqi
    Li, Yifan
    You, Long
    Zheng, Hao
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 261 : 316 - 324
  • [46] Highly sensitive electrochemical detection of iodate based on glassy carbon electrode modified with iridium oxide
    Yanna Lazarova
    Ivan Shterev
    Totka Dodevska
    Monatshefte für Chemie - Chemical Monthly, 2018, 149 : 1955 - 1962
  • [47] Electrocatalytic oxidation and determination of insulin at CNT-nickel-cobalt oxide modified electrode
    Arvinte, Adina
    Westermann, A. Caroline
    Sesay, Adama Marie
    Virtanen, Vesa
    SENSORS AND ACTUATORS B-CHEMICAL, 2010, 150 (02) : 756 - 763
  • [48] Harnessing in-situ electrocatalytic oxidation with a cobalt oxide decorated nanocomposite electrode for efficient arsenic removal in capacitive deionization
    Wu, Po-Chang
    Cuong, Dinh Viet
    Wu, Jhen-Cih
    Liou, Sofia Ya Hsuan
    Hou, Chia-Hung
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [49] Cerium oxide modified iridium nanorods for highly efficient electrochemical water splitting
    Xu, Kai
    Zhu, Zizheng
    Guo, Wen
    Zhang, Hongyan
    Yu, Tingting
    Wei, Wenxian
    Liang, Wenjie
    Zhang, Dongen
    He, Maoshuai
    Yang, Tao
    CHEMICAL COMMUNICATIONS, 2021, 57 (70) : 8798 - 8801
  • [50] A pH electrode based on melt-oxidized iridium oxide
    Yao, S
    Wang, M
    Madou, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) : H29 - H36