Cobalt Oxide Electrode Doped with Iridium Oxide as Highly Efficient Water Oxidation Electrode

被引:33
|
作者
Tae, Eunju Lee [1 ]
Song, Jihye [1 ]
Lee, A. Reum [1 ]
Kim, Caroline Hewon [1 ]
Yoon, Seokjun [1 ]
Hwang, In Chul [1 ]
Kim, Min Gyu [2 ]
Yoon, Kyung Byung [1 ]
机构
[1] Sogang Univ, Dept Chem, Seoul 04107, South Korea
[2] Pohang Univ Sci & Technol, PAL, Pohang 790784, Gyeongbuk, South Korea
来源
ACS CATALYSIS | 2015年 / 5卷 / 09期
基金
新加坡国家研究基金会;
关键词
water oxidation; crystalline cobalt oxide; crystalline iridium oxide; Tafel plot; XAS; EXAFS; oxygen vacancy; OXYGEN EVOLUTION REACTION; X-RAY-ABSORPTION; NEUTRAL PH; CATALYST; ELECTROCATALYSTS; NANOPARTICLES; PHOSPHATE; FILM; SPECTROSCOPY; MECHANISM;
D O I
10.1021/acscatal.5b00979
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystalline cobalt oxide nanoparticles (nc-CoOx) supported on ITO glass or Ni foam doped with 5 mol % crystalline iridium oxide nanoparticles (nc-IrOx) showed performances which are higher than those of nc-CoOx on ITO or Ni foam and nc-IrOx on a rotating glassy carbon disc electrode or Ni foam. The initial Co-III and Ir-IV become Co-IV and Ir-VI upon applying positive potentials. The nc-CoOx particles intrinsically carry (CoO5)-O-III centers which become (CoO6)-O-IV centers upon application of positive potentials. The O vacancy in (CoO5)-O-III is transferred to (IrO6)-O-VI upon application of positive potentials, giving rise to the formation of (IrO5)-O-VI centers, which are proposed to be the highly active catalytic centers for water oxidation.
引用
收藏
页码:5525 / 5529
页数:5
相关论文
empty
未找到相关数据