Cobalt Oxide Electrode Doped with Iridium Oxide as Highly Efficient Water Oxidation Electrode

被引:34
作者
Tae, Eunju Lee [1 ]
Song, Jihye [1 ]
Lee, A. Reum [1 ]
Kim, Caroline Hewon [1 ]
Yoon, Seokjun [1 ]
Hwang, In Chul [1 ]
Kim, Min Gyu [2 ]
Yoon, Kyung Byung [1 ]
机构
[1] Sogang Univ, Dept Chem, Seoul 04107, South Korea
[2] Pohang Univ Sci & Technol, PAL, Pohang 790784, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
water oxidation; crystalline cobalt oxide; crystalline iridium oxide; Tafel plot; XAS; EXAFS; oxygen vacancy; OXYGEN EVOLUTION REACTION; X-RAY-ABSORPTION; NEUTRAL PH; CATALYST; ELECTROCATALYSTS; NANOPARTICLES; PHOSPHATE; FILM; SPECTROSCOPY; MECHANISM;
D O I
10.1021/acscatal.5b00979
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystalline cobalt oxide nanoparticles (nc-CoOx) supported on ITO glass or Ni foam doped with 5 mol % crystalline iridium oxide nanoparticles (nc-IrOx) showed performances which are higher than those of nc-CoOx on ITO or Ni foam and nc-IrOx on a rotating glassy carbon disc electrode or Ni foam. The initial Co-III and Ir-IV become Co-IV and Ir-VI upon applying positive potentials. The nc-CoOx particles intrinsically carry (CoO5)-O-III centers which become (CoO6)-O-IV centers upon application of positive potentials. The O vacancy in (CoO5)-O-III is transferred to (IrO6)-O-VI upon application of positive potentials, giving rise to the formation of (IrO5)-O-VI centers, which are proposed to be the highly active catalytic centers for water oxidation.
引用
收藏
页码:5525 / 5529
页数:5
相关论文
共 35 条
[1]   Splitting Water with Cobalt [J].
Artero, Vincent ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7238-7266
[2]   Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors [J].
Blakemore, James D. ;
Schley, Nathan D. ;
Olack, Gerard W. ;
Incarvito, Christopher D. ;
Brudvig, Gary W. ;
Crabtree, Robert H. .
CHEMICAL SCIENCE, 2011, 2 (01) :94-98
[3]   MECHANISM OF OXYGEN EVOLUTION ON PEROVSKITES [J].
BOCKRIS, JO ;
OTAGAWA, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (15) :2960-2971
[4]   In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction [J].
Casalongue, Hernan G. Sanchez ;
Ng, May Ling ;
Kaya, Sarp ;
Friebel, Daniel ;
Ogasawara, Hirohito ;
Nilsson, Anders .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (28) :7169-7172
[5]   Combinatorial discovery of bifunctional oxygen reduction - water oxidation electrocatalysts for regenerative fuel cells [J].
Chen, GY ;
Delafuente, DA ;
Sarangapani, S ;
Mallouk, TE .
CATALYSIS TODAY, 2001, 67 (04) :341-355
[6]   Copper(II) Catalysis of Water Oxidation [J].
Chen, Zuofeng ;
Meyer, Thomas J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (02) :700-703
[7]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[8]   The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J].
Dau, Holger ;
Limberg, Christian ;
Reier, Tobias ;
Risch, Marcel ;
Roggan, Stefan ;
Strasser, Peter .
CHEMCATCHEM, 2010, 2 (07) :724-761
[9]   Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes [J].
Doyle, Richard L. ;
Godwin, Ian J. ;
Brandon, Michael P. ;
Lyons, Michael E. G. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (33) :13737-13783
[10]   Energy and environment policy case for a global project on artificial photosynthesis [J].
Faunce, Thomas A. ;
Lubitz, Wolfgang ;
Rutherford, A. W. Bill ;
MacFarlane, Douglas R. ;
Moore, Gary F. ;
Yang, Peidong ;
Nocera, Daniel G. ;
Moore, Tom A. ;
Gregory, Duncan H. ;
Fukuzumi, Shunichi ;
Yoon, Kyung Byung ;
Armstrong, Fraser A. ;
Wasielewski, Michael R. ;
Styring, Stenbjorn .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :695-698