Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells

被引:67
|
作者
Zhao, Jian [1 ]
Shahgaldi, Samaneh [1 ]
Alaefour, Ibrahim [1 ]
Xu, Qian [1 ]
Li, Xianguo [1 ]
机构
[1] Univ Waterloo, Lab Fuel Cell & Green Energy RD&D 20 20, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Polymer electrolyte membrane fuel cell; Gas permeability; Catalyzed electrode; Pt loading; Pt-carbon ratio; RANDOM FIBER STRUCTURES; MICRO-POROUS LAYER; DIFFUSION LAYERS; KNUDSEN DIFFUSIVITIES; 2-PHASE FLOW; PERFORMANCE; TRANSPORT; PEMFC; DEGRADATION; POROSITY;
D O I
10.1016/j.apenergy.2017.10.087
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For polymer electrolyte membrane (PEM) fuel cells, the importance of mass transport property, gas permeability, in gas diffusion layer (GDL) is widely recognized with less attention being paid to catalyzed electrode (GDL with a catalyst layer). In this study, the contribution of the catalyst layer to the overall gas permeability of the electrode is experimentally investigated for different catalysts with a range of Pt loadings at various temperatures for air, oxygen and nitrogen gases. Results indicate that the gas permeability of the GDLs can be reduced by 58-77% with the presence of a catalyst layer. For the constant Pt loadings, the electrodes with higher Pt/C ratios (e.g., 60% Pt/C) show larger gas permeability than those with lower ratios (e.g., 30% Pt/C) due to their smaller thicknesses and higher porosity. Similarly, for the electrodes with the same type of catalysts, the gas permeability is higher for lower Pt loadings. Further, the effective gas permeability of the catalyst layers alone is about two orders of magnitude smaller than that of the GDLs. Additionally, operating at higher temperatures slightly enhances the permeability. Oxygen gas has a higher permeability than air and nitrogen, but the differences are small. These results highlight the importance of catalyst layer, hence the Pt loadings and Pt/C ratios, in determining the mass transport throughout the entire electrode in PEM fuel cells.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 50 条
  • [31] Electrocatalysts for polymer electrolyte membrane fuel cells
    Song, Yujiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [32] Polymer Electrolyte Membrane Technology for Fuel Cells
    Raj G. Rajendran
    MRS Bulletin, 2005, 30 : 587 - 590
  • [33] Investigation of Gas Diffusion Layers for Flexible Polymer Electrolyte Membrane Fuel Cells
    Yoonho So
    Hongnyoung Yoo
    Jaeyeon Kim
    Obeen Kwon
    Seokhun Jeong
    Heesoo Choi
    Hyeonjin Cha
    Taehyun Park
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2023, 10 : 1007 - 1014
  • [34] Investigation of Gas Diffusion Layers for Flexible Polymer Electrolyte Membrane Fuel Cells
    So, Yoonho
    Yoo, Hongnyoung
    Kim, Jaeyeon
    Kwon, Obeen
    Jeong, Seokhun
    Choi, Heesoo
    Cha, Hyeonjin
    Park, Taehyun
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2023, 10 (04) : 1007 - 1014
  • [35] Gas supply control and experimental validation for polymer electrolyte membrane fuel cells
    Li, Cheng
    Zhao, Honghui
    Liu, Huayang
    Jiang, Weihai
    Ding, Tianwei
    Gao, Bingzhao
    Gao, Jinwu
    MECHATRONICS, 2023, 91
  • [36] Gas Flow Sputtering of Catalyst Layers for Polymer Electrolyte Membrane Fuel Cells
    Vasic, Stanislav
    Guenther, Bernd H.
    CHEMIE INGENIEUR TECHNIK, 2012, 84 (12) : 2204 - 2209
  • [37] Fractal-based theoretical model on saturation and relative permeability in the gas diffusion layer of polymer electrolyte membrane fuel cells
    Shi, Ying
    Cheng, Shu
    Quan, Shuhai
    JOURNAL OF POWER SOURCES, 2012, 209 : 130 - 140
  • [38] Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells
    Se-Kyu Park
    Eun Ae Cho
    In-Hwan Oh
    Korean Journal of Chemical Engineering, 2005, 22 : 877 - 881
  • [39] Proton conducting membrane for polymer electrolyte membrane fuel cells
    Wu, H.
    Wang, Y.X.
    Wang, S.C.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2001, 17 (04):
  • [40] Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells
    Park, SK
    Cho, EA
    Oh, IH
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2005, 22 (06) : 877 - 881