Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells

被引:67
|
作者
Zhao, Jian [1 ]
Shahgaldi, Samaneh [1 ]
Alaefour, Ibrahim [1 ]
Xu, Qian [1 ]
Li, Xianguo [1 ]
机构
[1] Univ Waterloo, Lab Fuel Cell & Green Energy RD&D 20 20, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Polymer electrolyte membrane fuel cell; Gas permeability; Catalyzed electrode; Pt loading; Pt-carbon ratio; RANDOM FIBER STRUCTURES; MICRO-POROUS LAYER; DIFFUSION LAYERS; KNUDSEN DIFFUSIVITIES; 2-PHASE FLOW; PERFORMANCE; TRANSPORT; PEMFC; DEGRADATION; POROSITY;
D O I
10.1016/j.apenergy.2017.10.087
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For polymer electrolyte membrane (PEM) fuel cells, the importance of mass transport property, gas permeability, in gas diffusion layer (GDL) is widely recognized with less attention being paid to catalyzed electrode (GDL with a catalyst layer). In this study, the contribution of the catalyst layer to the overall gas permeability of the electrode is experimentally investigated for different catalysts with a range of Pt loadings at various temperatures for air, oxygen and nitrogen gases. Results indicate that the gas permeability of the GDLs can be reduced by 58-77% with the presence of a catalyst layer. For the constant Pt loadings, the electrodes with higher Pt/C ratios (e.g., 60% Pt/C) show larger gas permeability than those with lower ratios (e.g., 30% Pt/C) due to their smaller thicknesses and higher porosity. Similarly, for the electrodes with the same type of catalysts, the gas permeability is higher for lower Pt loadings. Further, the effective gas permeability of the catalyst layers alone is about two orders of magnitude smaller than that of the GDLs. Additionally, operating at higher temperatures slightly enhances the permeability. Oxygen gas has a higher permeability than air and nitrogen, but the differences are small. These results highlight the importance of catalyst layer, hence the Pt loadings and Pt/C ratios, in determining the mass transport throughout the entire electrode in PEM fuel cells.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 50 条
  • [21] Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells
    Jiao, Kui
    Li, Xianguo
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 6876 - 6891
  • [22] Improved gas diffusion electrodes for hybrid polymer electrolyte fuel cells
    Uenlue, Murat
    Zhou, Junfeng
    Anestis-Richard, Irene
    Kim, Hyea
    Kohl, Paul A.
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4439 - 4444
  • [23] Investigation into the gas diffusion electrodes of polymer electrolyte membrane fuel cell under long-term durability test
    Ide, Masahiro
    Ikeda, Hironosuke
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2010, 2 (01)
  • [24] Fractal-based theoretical model on saturation and relative permeability in the gas diffusion layer of polymer electrolyte membrane fuel cells
    Shi, Ying
    Cheng, Shu
    Quan, Shuhai
    JOURNAL OF POWER SOURCES, 2012, 209 : 130 - 140
  • [25] Polymer Electrolyte Membrane Fuel Cells
    Antonio Asensio, Juan
    Pena, Juan
    Perez-Coll, Domingo
    Carlos Ruiz-Morales, Juan
    Marrero-Lopez, David
    Nunez, Pedro
    Ballesteros, Belen
    Canales-Vazquez, Jesus
    Borros, Salvador
    Gomez-Romero, Pedro
    AFINIDAD, 2011, 68 (554) : 246 - 258
  • [26] Transport phenomena in polymer electrolyte membrane fuel cells via voltage loss breakdown
    Flick, Sarah
    Dhanushkodi, Shankar R.
    Merida, Walter
    JOURNAL OF POWER SOURCES, 2015, 280 : 97 - 106
  • [27] Sensitivity Analysis of Mass Transport Properties of Gas Diffusion Layers of Polymer Electrolyte Membrane Fuel Cells
    Tahseen, Siddiq Husain
    Milani, Abbas S.
    Hoorfar, Mina
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2012, 2012, : 149 - 155
  • [28] Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes
    Mack, Florian
    Klages, Merle
    Scholta, Joachim
    Joerissen, Ludwig
    Morawietz, Tobias
    Hiesgen, Renate
    Kramer, Dominik
    Zeis, Roswitha
    JOURNAL OF POWER SOURCES, 2014, 255 : 431 - 438
  • [29] Alkaline Electrolytes and Reference Electrodes for Alkaline Polymer Electrolyte Membrane Fuel Cells
    Kizewski, J. P.
    Mudri, N. H.
    Zeng, R.
    Poynton, S. D.
    Slade, R. C. T.
    Varcoe, J. R.
    POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 27 - 35
  • [30] Segmented distribution of gas diffusion layer porosity and catalyst layer ionomer content in a polymer electrolyte membrane fuel cell
    Yu, Ruijiao
    Guo, Hang
    Chen, Hao
    Ye, Fang
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 209 : 412 - 424