Dimensionality Reduction with Category Information Fusion and Non-negative Matrix Factorization for Text Categorization

被引:0
|
作者
Zheng, Wenbin [1 ,2 ]
Qian, Yuntao [1 ]
Tang, Hong [3 ,4 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310003, Zhejiang, Peoples R China
[2] China Jiliang Univ, Coll Informat Engn, Hangzhou 310003, Zhejiang, Peoples R China
[3] Zhejiang Univ, Sch Aeronaut & Astronaut, Hangzhou 310003, Zhejiang, Peoples R China
[4] China Jiliang Univ, Coll Metrol Technol & Engn, Hangzhou, Peoples R China
来源
ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III | 2011年 / 7004卷
关键词
Text Categorization; Dimensionality reduction; Non-negative Matrix Factorization; Category Fusion; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dimensionality reduction can efficiently improve computing performance of classifiers in text categorization, and non-negative matrix factorization could map the high dimensional term space into a low dimensional semantic subspace easily. Meanwhile, the non-negative of the basis vectors could provide a meaningful explanation for the semantic subspace. However, it usually could not achieve a satisfied classification performance because it is sensitive to the noise, data missing and outlier as a linear reconstruction method. This paper proposes a novel approach in which the train text and its category information are fused and a transformation matrix that maps the term space into a semantic subspace is obtained by a basis orthogonality non-negative matrix factorization and truncation. Finally, the dimensionality can be reduced aggressively with these transformations. Experimental results show that the proposed approach remains a good classification performance in a very low dimensional case.
引用
收藏
页码:505 / +
页数:2
相关论文
共 50 条
  • [21] On the Effectiveness of Non-negative Matrix Factorization for Text Open-Set Recognition
    Impedovo, Angelo
    Rizzo, Giuseppe
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III, 2025, 2135 : 541 - 552
  • [22] Image semantic information mining algorithm by non-negative matrix factorization
    Li Yan
    Zhou Xingbo
    2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND ENGINEERING APPLICATIONS, 2013, : 345 - 348
  • [23] Evaluation of non-negative matrix factorization of grey matter in age prediction
    Varikuti, Deepthi P.
    Genon, Sarah
    Sotiras, Aristeidis
    Schwender, Holger
    Hoffstaedter, Felix
    Patil, Kaustubh R.
    Jockwitz, Christiane
    Caspers, Svenja
    Moebus, Susanne
    Amunts, Katrin
    Davatzikos, Christos
    Eickhoff, Simon B.
    NEUROIMAGE, 2018, 173 : 394 - 410
  • [24] Discover latent discriminant information for dimensionality reduction: Non-negative Sparseness Preserving Embedding
    Wong, W. K.
    PATTERN RECOGNITION, 2012, 45 (04) : 1511 - 1523
  • [25] Optimization and expansion of non-negative matrix factorization
    Lin, Xihui
    Boutros, Paul C.
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [26] Novel Algorithm for Non-Negative Matrix Factorization
    Tran Dang Hien
    Do Van Tuan
    Pham Van At
    Le Hung Son
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2015, 11 (02) : 121 - 133
  • [27] Optimization and expansion of non-negative matrix factorization
    Xihui Lin
    Paul C. Boutros
    BMC Bioinformatics, 21
  • [28] FARNESS PRESERVING NON-NEGATIVE MATRIX FACTORIZATION
    Babaee, Mohammadreza
    Bahmanyar, Reza
    Rigoll, Gerhard
    Datcu, Mihai
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3023 - 3027
  • [29] Rank selection for non-negative matrix factorization
    Cai, Yun
    Gu, Hong
    Kenney, Toby
    STATISTICS IN MEDICINE, 2023, 42 (30) : 5676 - 5693
  • [30] Convex Non-Negative Matrix Factorization in the Wild
    Thurau, Christian
    Kersting, Kristian
    Bauckhage, Christian
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 523 - 532