Simpson and Newton type inequalities for convex functions via newly defined quantum integrals

被引:104
作者
Budak, Huseyin [1 ]
Erden, Samet [2 ]
Ali, Muhammad Aamir [3 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] Bartin Univ, Fac Sci, Dept Math, Bartin, Turkey
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing, Peoples R China
关键词
convex function; quantum derivatives; quantum integral inequalities; Simpson inequality; HERMITE-HADAMARD INEQUALITIES;
D O I
10.1002/mma.6742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first establish two new identities, based on the kernel functions with either two section or three sections, involving quantum integrals by using new definition of quantum derivative. Then, some new inequalities related to Simpson's 1/3 formula for convex mappings are provided. In addition, Newton type inequalities, for functions whose quantum derivatives in modulus or their powers are convex, are deduced. We also mention that the results in this work generalize inequalities given in earlier study.
引用
收藏
页码:378 / 390
页数:13
相关论文
共 32 条
  • [1] Magnetoelectronic properties of ferromagnetic compounds Rb2TaZ6(Z = Cl, Br) for possible spintronic applications
    Ali, Malak Azmat
    Murtaza, G.
    Khan, Afzal
    Algrafy, Eman
    Mahmood, Asif
    Ramay, Shahid M.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (19)
  • [2] Nondifferentiable variational principles in terms of a quantum operator
    Almeida, Ricardo
    Torres, Delfim F. M.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (18) : 2231 - 2241
  • [3] Alomari M., 2009, Research report collection, V12
  • [4] q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    Kunt, Mehmet
    Iscan, Imdat
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) : 193 - 203
  • [5] [Anonymous], 2000, HIST Q CALCULUS NEW
  • [6] [Anonymous], 2018, J DIABETES RES, DOI DOI 10.1016/j.patrec.2018.02.001
  • [7] ASKEY R, 1985, MEM AM MATH SOC, V54, P1
  • [8] On q-Hermite-Hadamard inequalities for general convex functions
    Bermudo, S.
    Korus, P.
    Napoles Valdes, J. E.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 364 - 374
  • [9] BRITO A. F. S., 2012, THESIS
  • [10] Cresson J, 2009, TOPOL METHOD NONL AN, V33, P217