Stability investigations of composite solid electrolytes based on Li7La3Zr2O12 in contact with LiCoO2

被引:6
作者
Il'ina, E. A. [1 ]
Antonov, B. D. [1 ]
Vlasov, M., I [1 ]
机构
[1] RAS, Ural Branch, Inst High Temp Electrochem, Akad Skaya St 20, Ekaterinburg 620137, Russia
关键词
Li7La3Zr2O12; Composite electrolyte; LiCoO2; Chemical stability; Power sources; LI+ CONDUCTIVITY; SINTERING ADDITIVES; LITHIUM; PERFORMANCE; CATHODE;
D O I
10.1016/j.ssi.2020.115452
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiCoO2 was synthesized by the sol-gel method. Using the proposed synthesis method, a cathode was obtained at the final annealing temperature of 700 degrees C with a grain size of 40-80 nm. The chemical reaction stability of composite solid electrolytes based on Li7La3Zr2O12 in contact with LiCoO2 was studied using differential scanning calorimetry, Raman spectroscopy, and X-ray diffraction. The composite solid electrolytes based on tetragonal and cubic modification of Li7La3Zr2O12 with the addition of Li2O-Y2O3-SiO2 glass are stable in contact with LiCoO2 over a wide temperature range (35-900 degrees C). Tetragonal Li7La3Zr2O12 solid electrolyte is stable in contact with the LiCoO2 cathode due to the introduction of a glassy additive. Therefore, the possibility and prospects of using composite solid electrolytes based on Li7La3Zr2O12 in lithium and lithium-ion power sources with LiCoO2 as a cathode are shown.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Interpretation of the resistance of Li7La3Zr2O12-Li2O-B2O3-SiO2 composite electrolytes for all-solid-state batteries using the distribution of relaxation times technique
    Il'ina, E. A.
    Osinkin, D. A.
    JOURNAL OF POWER SOURCES, 2023, 580
  • [22] Influence of Li2O-Y2O3-SiO2 glass additive on conductivity and stability of cubic Li7La3Zr2O12
    Il'ina, E. A.
    Druzhinin, K., V
    Antonov, B. D.
    Pankratov, A. A.
    Vovkotrub, E. G.
    IONICS, 2019, 25 (11) : 5189 - 5199
  • [23] Processing and Properties of Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes
    Chen, Chao
    Wang, Kexin
    He, Hongying
    Hanc, Emil
    Kotobuki, Masashi
    Lu, Li
    SMALL, 2023, 19 (12)
  • [24] Fast Charge Transfer across the Li7La3Zr2O12 Solid Electrolyte/LiCoO2 Cathode Interface Enabled by an Interphase-Engineered All-Thin-Film Architecture
    Sastre, Jordi
    Chen, Xubin
    Aribia, Abdessalem
    Tiwari, Ayodhya N.
    Romanyuk, Yaroslav E.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (32) : 36196 - 36207
  • [25] Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12
    Kazyak, Eric
    Chen, Kuan-Hung
    Wood, Kevin N.
    Davis, Andrew L.
    Thompson, Travis
    Bielinski, Ashley R.
    Sanchez, Adrian J.
    Wang, Xiang
    Wane, Chongmin
    Sakamoto, Jeff
    Dasgupta, Neil P.
    CHEMISTRY OF MATERIALS, 2017, 29 (08) : 3785 - 3792
  • [26] Li7La3Zr2O12 Ceramic Nanofiber-Incorporated Solid Polymer Electrolytes for Flexible Lithium Batteries
    Zhang, Wei
    Wang, Xuewen
    Zhang, Qi
    Wang, Lixiang
    Xu, Zhiyong
    Li, Yang
    Huang, Shaoming
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) : 5238 - 5246
  • [27] Improving Ionic Conductivity with Bimodal-Sized Li7La3Zr2O12 Fillers for Composite Polymer Electrolytes
    Sun, Yan
    Zhan, Xiaowen
    Hu, Jiazhi
    Wang, Yikai
    Gao, Shuang
    Shen, Yuhua
    Cheng, Yang-Tse
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (13) : 12467 - 12475
  • [28] Dense freeze-cast Li7La3Zr2O12 solid electrolytes with oriented open porosity and contiguous ceramic scaffold
    Buannic, Lucienne
    Naviroj, Maninpat
    Miller, Sarah M.
    Zagorski, Jakub
    Faber, Katherine T.
    Llordes, Anna
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (03) : 1021 - 1029
  • [29] The standard enthalpy of formation of superionic solid electrolyte Li7La3Zr2O12
    Il'ina, E. A.
    Raskovalov, A. A.
    Safronov, A. P.
    THERMOCHIMICA ACTA, 2017, 657 : 26 - 30
  • [30] Needleless Electrospinning for High Throughput Production of Li7La3Zr2O12 Solid Electrolyte Nanofibers
    Rosenthal, Tanner
    Weller, J. Mark
    Chan, Candace K.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (37) : 17399 - 17405