Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images

被引:219
作者
Mahmood, Faisal [1 ,2 ]
Borders, Daniel [3 ]
Chen, Richard J. [3 ]
Mckay, Gregory N. [3 ]
Salimian, Kevan J. [4 ]
Baras, Alexander [4 ]
Durr, Nicholas J. [3 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02215 USA
[2] Broad Inst Harvard & MIT, Boston, MA 02142 USA
[3] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ Hosp, Dept Pathol, Baltimore, MD 21287 USA
关键词
Nuclei segmentation; histopathology segmentation; computational pathology; deep learning; adversarial training; synthetic data; synthetic pathology data; STAIN NORMALIZATION; CANCER; PATHOLOGY;
D O I
10.1109/TMI.2019.2927182
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nuclei segmentation is a fundamental task for various computational pathology applications including nuclei morphology analysis, cell type classification, and cancer grading. Deep learning has emerged as a powerful approach to segmenting nuclei but the accuracy of convolutional neural networks (CNNs) depends on the volume and the quality of labeled histopathology data for training. In particular, conventional CNN-based approaches lack structured prediction capabilities, which are required to distinguish overlapping and clumped nuclei. Here, we present an approach to nuclei segmentation that overcomes these challenges by utilizing a conditional generative adversarial network (cGAN) trainedwith syntheticand real data. We generate a large dataset of H&E training images with perfect nuclei segmentation labels using an unpaired GAN framework. This synthetic data along with real histopathology data from six different organs are used to train a conditional GAN with spectral normalization and gradient penalty for nucleisegmentation. This adversarial regression framework enforces higher-order spacial-consistency when compared to conventional CNN models. We demonstrate that this nuclei segmentation approach generalizes across different organs, sites, patients and disease states, and outperforms conventional approaches, especially in isolating individual and overlapping nuclei.
引用
收藏
页码:3257 / 3267
页数:11
相关论文
共 86 条
[1]   Generative Adversarial Networks for Brain Lesion Detection [J].
Alex, Varghese ;
Safwan, Mohammed K. P. ;
Chennamsetty, Sai Saketh ;
Krishnamurthi, Ganapathy .
MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
[2]  
Alturkistani Hani A, 2015, Glob J Health Sci, V8, P72, DOI 10.5539/gjhs.v8n3p72
[3]  
[Anonymous], 2018, ARXIV180607201
[4]  
[Anonymous], 2016, J PATHOL INFORM
[5]  
[Anonymous], 2017, ARXIV PREPRINT ARXIV
[6]  
[Anonymous], 2018, ARXIV180600600
[7]  
[Anonymous], 2018, IJCAI
[8]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[9]   Stain Specific Standardization of Whole-Slide Histopathological Images [J].
Bejnordi, Babak Ehteshami ;
Litjens, Geert ;
Timofeeva, Nadya ;
Otte-Holler, Irene ;
Homeyer, Andre ;
Karssemeijer, Nico ;
van der Laak, Jeroen A. W. M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) :404-415
[10]   Evaluation of the Blood Film [J].
Campbell, Terry W. .
CLINICS IN LABORATORY MEDICINE, 2015, 35 (03) :703-+