A Cake-Style CoS2@MoS2/RGO Hybrid Catalyst for Efficient Hydrogen Evolution

被引:260
作者
Guo, Yaxiao [1 ,2 ]
Gan, Linfeng [1 ]
Shang, Changshuai [1 ,2 ]
Wang, Erkang [1 ]
Wang, Jin [1 ,3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, 5625 Renmin St, Changchun 130022, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] SUNY Stony Brook, Dept Chem & Phys, Stony Brook, NY 11794 USA
基金
中国国家自然科学基金;
关键词
ACTIVE EDGE SITES; CARBON NANOFIBERS; MOS2; GRAPHENE; NANOSHEETS; PERFORMANCE; COCATALYSTS; CHEMISTRY; GRAPHITE; LITHIUM;
D O I
10.1002/adfm.201602699
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A three-tiered cake-style composite is elaborately established, with the characteristic of a double-deck of MoS2 nanosheets and reduction of graphene oxide (RGO) sheets dotted with CoS2 nanoparticles (CoS2@MoS2/RGO). Because of the prominent synergistic effect of graphene acting as conductive support, MoS2 and CoS2 providing abundant catalytically active sites, and the cake-style structure promoting mechanical stability, the CoS2@MoS2/RGO exhibits a superior hydrogen evolution reaction activity with a small overpotential of 98 mV at cathodic current density of 10 mA cm(-2), and a small Tafel slope of 37.4 mV dec(-1), as well as excellent cycling stability. Density functional theory calculations reveal that the hydrogen adsorption free energy of CoS2@MoS2/RGO is close to zero.
引用
收藏
页数:7
相关论文
共 52 条
[1]  
[Anonymous], CAMBR SER TOT EN PAC
[2]   Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity [J].
Benck, Jesse D. ;
Chen, Zhebo ;
Kuritzky, Leah Y. ;
Forman, Arnold J. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2012, 2 (09) :1916-1923
[3]  
Cabán-Acevedo M, 2015, NAT MATER, V14, P1245, DOI [10.1038/NMAT4410, 10.1038/nmat4410]
[4]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[5]   Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams [J].
Chang, Yung-Huang ;
Lin, Cheng-Te ;
Chen, Tzu-Yin ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Zhang, Wenjing ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2013, 25 (05) :756-760
[6]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[7]   Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction [J].
Deng, Jiao ;
Ren, Pengju ;
Deng, Dehui ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (07) :2100-2104
[8]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[9]   Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis [J].
Faber, Matthew S. ;
Lukowski, Mark A. ;
Ding, Qi ;
Kaiser, Nicholas S. ;
Jin, Song .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (37) :21347-21356
[10]   High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures [J].
Faber, Matthew S. ;
Dziedzic, Rafal ;
Lukowski, Mark A. ;
Kaiser, Nicholas S. ;
Ding, Qi ;
Jin, Song .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (28) :10053-10061