Strong surface magnetic field generation in relativistic short pulse laser-plasma interaction with an applied seed magnetic field

被引:9
|
作者
Weichman, K. [1 ]
Robinson, A. P. L. [2 ]
Murakami, M. [3 ]
Arefiev, A., V [1 ,4 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England
[3] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan
[4] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92037 USA
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 11期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
laser– plasma interaction; magnetic field generation; high energy density physics; particle-in-cell simulations;
D O I
10.1088/1367-2630/abc496
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
While plasma often behaves diamagnetically, we demonstrate that the laser irradiation of a thin opaque target with an embedded target-transverse seed magnetic field B-seed can trigger the generation of an order-of-magnitude stronger magnetic field with opposite sign at the target surface. Strong surface field generation occurs when the laser pulse is relativistically intense and results from the currents associated with the cyclotron rotation of laser-heated electrons transiting through the target and the compensating current of cold electrons. We derive a predictive scaling for this surface field generation, B-gen similar to -2 pi B-seed Delta x/lambda(0) (in the large spot size limit), where Delta x is the target thickness and lambda(0) is the laser wavelength, and conduct 1D and 2D particle-in-cell simulations to confirm its applicability over a wide range of conditions. We additionally demonstrate that both the seed and surface-generated magnetic fields can have a strong impact on application-relevant plasma dynamics, for example substantially altering the overall expansion and ion acceleration from a mu m-thick laser-irradiated target with a kilotesla-level seed magnetic field.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Anisotropic heating and magnetic field generation due to Raman scattering in laser-plasma interactions
    Silva, T.
    Schoeffler, K.
    Vieira, J.
    Hoshino, M.
    Fonseca, R. A.
    Silva, L. O.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [32] Relativistic laser guiding in an azimuthal magnetic field in a plasma
    Liu, CS
    Tripathi, VK
    PHYSICS OF PLASMAS, 2001, 8 (01) : 285 - 288
  • [33] Thermoelectric mechanism for self-generated magnetic field in femtosecond laser-plasma interaction
    School of Physics and Technology, Xinjiang University, Urumqi 830046, China
    Qiangjiguang Yu Lizishu, 2013, 7 (1709-1714):
  • [34] HEAT-FLUX LIMITATION BY MAGNETIC-FIELD CURVATURE IN LASER-PLASMA INTERACTION
    YU, MY
    SHUKLA, PK
    RUHR, U
    SPATSCHEK, KH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 989 - 989
  • [35] HEAT-FLUX LIMITATION BY MAGNETIC-FIELD CURVATURE IN LASER-PLASMA INTERACTION
    YU, MY
    SHUKLA, PK
    SPATSCHEK, KH
    PHYSICS OF FLUIDS, 1980, 23 (01) : 226 - 227
  • [36] Excitation of surface plasma waves and fast electron generation in relativistic laser-plasma interaction
    Raynaud, M.
    Heron, A.
    Adam, J. -C.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [37] Long waves in a relativistic pair plasma in a strong magnetic field
    Gedalin, M.
    Melrose, D.B.
    Gruman, E.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (3-B):
  • [38] Electrical conductivity of hot relativistic plasma in a strong magnetic field
    Ghosh, Ritesh
    Shovkovy, Igor A.
    PHYSICAL REVIEW D, 2024, 110 (09)
  • [39] LANGMUIR TURBULENCE OF A RELATIVISTIC PLASMA IN A STRONG MAGNETIC-FIELD
    LOMINADZE, JG
    MIKHAILOVSKY, AB
    SAGDEEV, RZ
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1979, 77 (05): : 1851 - 1861
  • [40] Damping and dispersion of relativistic plasma in the strong longitudinal magnetic field
    Krasovitsky, V. B.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2008, (04): : 68 - 69