AUTOMATIC BRAIN DOSE ESTIMATION IN COMPUTED TOMOGRAPHY USING PATIENT DICOM IMAGES

被引:8
作者
Gharbi, Souha [1 ]
Labidi, Salam [1 ]
Mars, Mokhtar [1 ]
机构
[1] Univ Tunis EL Manar, Inst Super Technol Med Tunis, Lab Rech Biophys & Technol Med, 9 Ave Docteur Z Essafi, Tunis 1006, Tunisia
关键词
ATTENUATION-BASED ESTIMATION; CANCER-RISK ESTIMATION; PART I. DEVELOPMENT; CT EXAMINATIONS; LENGTH PRODUCT; SIZE; VALIDATION; INDEX; SEGMENTATION; QUALITY;
D O I
10.1093/rpd/ncaa006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aims to develop an Automatic Brain Dose Estimation (ABDE) methodology for head computed tomography examinations. The ABDE is to be applied first to an anthropomorphic Alderson phantom to obtain a Correction factor (C-f) between the ABDE and the direct absorbed brain dose using dosemeters positioned within the anthropomorphic phantom. Then, in order to estimate the correct brain dose for patient, the C-f was multiplied by the mean ABDE values for each patient. Results were compared to those registered with a mathematical simulation phantom using CT-Expo V 2.4 software. Results showed no significant difference between the correct ABDE values and the CT-Expo values with amean percent difference of 2.54 +/- 0.01%. In conclusion, ABDE yields a correct estimation of brain dose, taking into account the size and attenuation of the irradiated region. Thus, it is clinically recommended for accurate patient brain dose assessment.
引用
收藏
页码:536 / 542
页数:7
相关论文
共 50 条
[41]   Model-Free automatic segmentation of the aortic valve in multislice computed tomography images [J].
Unay, Devrim ;
Harmankaya, Ibrahim ;
Oksuz, Ilkay ;
Cubuk, Rahmi ;
Celik, Levent ;
Kadipasaoglu, Kamuran .
PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2021, 27 (02) :122-128
[42]   Automatic Segmentation of Cerebrospinal Fluid, White and Gray Matter in Unenhanced Computed Tomography Images [J].
Gupta, Varsha ;
Ambrosius, Wojciech ;
Qian, Guoyu ;
Blazejewska, Anna ;
Kazmierski, Radoslaw ;
Urbanik, Andrzej ;
Nowinski, Wieslaw L. .
ACADEMIC RADIOLOGY, 2010, 17 (11) :1350-1358
[43]   A Fast Automatic Reconstruction Method for Panoramic Images Based on Cone Beam Computed Tomography [J].
Zhang, Jianguo ;
Jiang, Yichuan ;
Gao, Fei ;
Zhao, Sheng ;
Yang, Fan ;
Song, Liang .
ELECTRONICS, 2022, 11 (15)
[44]   AUTOMATIC ORGAN DELINEATION OF COMPUTED TOMOGRAPHY IMAGES FOR RADIOTHERAPY PLANNING IN PROSTATE CANCER An Overview [J].
Oliveira, Celeste Marques ;
Rodrigues, Pedro Pereira .
HEALTHINF 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON HEALTH INFORMATICS, 2011, :482-485
[45]   Postharvest noninvasive classification of tough-fibrous asparagus using computed tomography images [J].
Donis-Gonzalez, Irwin R. ;
Guyer, Daniel E. ;
Pease, Anthony .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2016, 121 :27-35
[46]   CORTICAL AND VASCULAR PROBABILITY MAPS FOR ANALYSIS OF HUMAN BRAIN IN COMPUTED TOMOGRAPHY IMAGES [J].
Peter, Roman ;
Emmer, Bart J. ;
van Es, Adriaan C. G. M. ;
van Walsum, Theo .
2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, :1141-1145
[47]   Effect of Body Mass Index on Effective Dose in Multi Detector Computed Tomography Abdomen Using Automatic Exposure Control [J].
Nayak, S. Shailesh ;
Yadav, Sushil ;
Pradhan, Abhimanyu .
ETHIOPIAN JOURNAL OF HEALTH SCIENCES, 2024, 34 (06) :494-500
[48]   Applying the AAPM 293 report to estimate the absorbed dose during head computed tomography: using head circumference for rapid dose estimation [J].
Chen, Tiao ;
Kong, Xiangchuang ;
Peng, Wei ;
Liao, Tian ;
Hu, Huaifei ;
Pan, Ning ;
Yuan, Zilong .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (05) :3140-3149
[49]   Improved Patient Size Estimates for Accurate Dose Calculations in Abdomen Computed Tomography [J].
Lee, Chang-Lae .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 71 (02) :116-120
[50]   An approach to automatic detection of body parts and their size estimation from computed tomography image [J].
Acharyya, Mausumi ;
Stoeckel, Jonathan ;
Dinesh, M. S. .
MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260