Automated Identification of Dementia Using FDG-PET Imaging

被引:23
作者
Xia, Yong [1 ,2 ,3 ]
Lu, Shen [2 ]
Wen, Lingfeng [2 ,3 ]
Eberl, Stefan [2 ,3 ]
Fulham, Michael [2 ,3 ,4 ]
Feng, David Dagan [2 ,5 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Shaanxi Prov Key Lab Speech & Image Informat Proc, Xian 710072, Peoples R China
[2] Univ Sydney, Sch Informat Technol, BMIT Res Grp, Sydney, NSW 2006, Australia
[3] Royal Prince Alfred Hosp, Dept Mol Imaging, Sydney, NSW 2050, Australia
[4] Univ Sydney, Sydney Med Sch, Sydney, NSW 2006, Australia
[5] Shanghai Jiao Tong Univ, Med X Res Inst, Shanghai 200030, Peoples R China
基金
澳大利亚研究理事会;
关键词
ALZHEIMERS-DISEASE; FRONTOTEMPORAL DEMENTIA; FEATURE-SELECTION; CEREBRAL ATROPHY; CLASSIFICATION; DIAGNOSIS; AD; PATTERN; MRI;
D O I
10.1155/2014/421743
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Parametric FDG-PET images offer the potential for automated identification of the different dementia syndromes. However, various existing image features and classifiers have their limitations in characterizing and differentiating the patterns of this disease. We reported a hybrid feature extraction, selection, and classification approach, namely, the GA-MKL algorithm, for separating patients with suspected Alzheimer's disease and frontotemporal dementia from normal controls. In this approach, we extracted three groups of features to describe the average level, spatial variation, and asymmetry of glucose metabolic rates in 116 cortical volumes. An optimal combination of features, that is, capable of classifying dementia cases was identified by a genetic algorithm-(GA-) based method. The condition of each FDG-PET study was predicted by applying the selected features to a multikernel learning (MKL) machine, in which the weighting parameter of each kernel function can be automatically estimated. We compared our approach to two state-of-the-art dementia identification algorithms on a set of 129 clinical cases and improved the performance in separating the dementia types, achieving accuracy of 94.62%. There is a very good agreement between the proposed automated technique and the diagnosis made by clinicians.
引用
收藏
页数:8
相关论文
共 38 条
[1]  
Adeli H, 2005, J ALZHEIMERS DIS, V7, P187
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Forecasting the global burden of Alzheimer's disease [J].
Brookmeyer, Ron ;
Johnson, Elizabeth ;
Ziegler-Graham, Kathryn ;
Arrighi, H. Michael .
ALZHEIMERS & DEMENTIA, 2007, 3 (03) :186-191
[4]   Summary Metrics to Assess Alzheimer Disease Related Hypometabolic Pattern with 18F-FDG PET: Head-to-Head Comparison [J].
Caroli, Anna ;
Prestia, Annapaola ;
Chen, Kewei ;
Ayutyanont, Napatkamon ;
Landau, Susan M. ;
Madison, Cindee M. ;
Haense, Cathleen ;
Herholz, Karl ;
Nobili, Flavio ;
Reiman, Eric M. ;
Jagust, William J. ;
Frisoni, Giovanni B. .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (04) :592-600
[5]   Rates of global and regional cerebral atrophy in AD and frontotemporal dementia [J].
Chan, D ;
Fox, NC ;
Jenkins, R ;
Scahill, RI ;
Crum, WR ;
Rossor, MN .
NEUROLOGY, 2001, 57 (10) :1756-1763
[6]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[7]   Design and construction of a realistic digital brain phantom [J].
Collins, DL ;
Zijdenbos, AP ;
Kollokian, V ;
Sled, JG ;
Kabani, NJ ;
Holmes, CJ ;
Evans, AC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (03) :463-468
[8]   Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI [J].
Davatzikos, C. ;
Resnick, S. M. ;
Wu, X. ;
Parmpi, P. ;
Clark, C. M. .
NEUROIMAGE, 2008, 41 (04) :1220-1227
[9]   Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies [J].
Devous, MD .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2002, 29 (12) :1685-1696
[10]  
Eberl S, 1997, EUR J NUCL MED, V24, P299, DOI 10.1007/s002590050056