Radial extensions in fractional Sobolev spaces

被引:1
|
作者
Brezis, H. [1 ,2 ,3 ]
Mironescu, P. [4 ]
Shafrir, I. [2 ]
机构
[1] Rutgers State Univ, Hill Ctr, Dept Math, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[4] Univ Lyon 1, Univ Lyon, CNRS, Inst Camille Jordan,UMR 5208, 43,Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Sobolev spaces; Fractional Sobolev spaces; Radial extensions;
D O I
10.1007/s13398-018-0510-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given f : partial derivative (-1, 1)(n) -> R, consider its radial extension Tf(X) := f (X / parallel to X parallel to infinity), for all X is an element of [-1, 1](n)backslash {0}. Brezis and Mironescu (RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 95: 121-143, 2001), stated the following auxiliary result (Lemma D.1). If 0 < s < 1, 1 < p < infinity and n >= 2 are such 1 < sp < n, then f vertical bar -> Tf is a bounded linear operator from W-s,W-p (partial derivative(-1, 1)(n)) into W-s,W-p ((-1,1)(n)). The proof of this result contained a flaw detected by Shafrir. We present a correct proof. We also establish a variant of this result involving higher order derivatives and more general radial extension operators. More specifically, let B be the unit ball for the standard Euclidean norm vertical bar vertical bar in R-n, and set U(a)f(X) := vertical bar X vertical bar(a) f (X/vertical bar X vertical bar), for all X is an element of (B) over bar backslash{0}, for all f : partial derivative B -> R. Let a is an element of R, s > 0, 1 <= p < infinity and n >= 2 be such that (s - a) p < n. Then F vertical bar -> U(a)f is a bounded linear operator from W-s,W-p (partial derivative B) into W-s,W-p (B).
引用
收藏
页码:707 / 714
页数:8
相关论文
共 50 条
  • [41] Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces
    Arcangeli, Remi
    Jose Torrens, Juan
    STUDIA MATHEMATICA, 2013, 214 (02) : 101 - 120
  • [42] Embedding theorems for variable exponent fractional Sobolev spaces and an application
    Liu, Haikun
    Fu, Yongqiang
    AIMS MATHEMATICS, 2021, 6 (09): : 9835 - 9858
  • [43] Compact embedding theorems for fractional Sobolev spaces with variable exponents
    Berghout, Mohamed
    Baalal, Azeddine
    ADVANCES IN OPERATOR THEORY, 2020, 5 (01) : 83 - 93
  • [44] Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces
    Brezis, Haim
    Mironescu, Petru
    JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) : 387 - 404
  • [45] The distributional hyper-Jacobian determinants in fractional Sobolev spaces
    Wu, Chuanxi
    Tu, Qiang
    Qiu, Xueting
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
  • [46] A posteriori error estimates with point sources in fractional sobolev spaces
    Gaspoz, F. D.
    Morin, P.
    Veeser, A.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (04) : 1018 - 1042
  • [47] On density of compactly supported smooth functions in fractional Sobolev spaces
    Bartłomiej Dyda
    Michał Kijaczko
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 (4): : 1855 - 1867
  • [48] FRACTIONAL SOBOLEV SPACES AND FUNCTIONS OF BOUNDED VARIATION OF ONE VARIABLE
    Bergounioux, Maitine
    Leaci, Antonio
    Nardi, Giacomo
    Tomarelli, Franco
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (04) : 936 - 962
  • [49] A distributional approach to fractional Sobolev spaces and fractional variation: Existence of blow-up
    Comi, Giovanni E.
    Stefani, Giorgio
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) : 3373 - 3435
  • [50] Dirac-Sobolev Spaces and Sobolev Spaces
    Ichinose, Takashi
    Saito, Yoshimi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (02): : 291 - 310