Radial extensions in fractional Sobolev spaces

被引:1
|
作者
Brezis, H. [1 ,2 ,3 ]
Mironescu, P. [4 ]
Shafrir, I. [2 ]
机构
[1] Rutgers State Univ, Hill Ctr, Dept Math, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[4] Univ Lyon 1, Univ Lyon, CNRS, Inst Camille Jordan,UMR 5208, 43,Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Sobolev spaces; Fractional Sobolev spaces; Radial extensions;
D O I
10.1007/s13398-018-0510-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given f : partial derivative (-1, 1)(n) -> R, consider its radial extension Tf(X) := f (X / parallel to X parallel to infinity), for all X is an element of [-1, 1](n)backslash {0}. Brezis and Mironescu (RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 95: 121-143, 2001), stated the following auxiliary result (Lemma D.1). If 0 < s < 1, 1 < p < infinity and n >= 2 are such 1 < sp < n, then f vertical bar -> Tf is a bounded linear operator from W-s,W-p (partial derivative(-1, 1)(n)) into W-s,W-p ((-1,1)(n)). The proof of this result contained a flaw detected by Shafrir. We present a correct proof. We also establish a variant of this result involving higher order derivatives and more general radial extension operators. More specifically, let B be the unit ball for the standard Euclidean norm vertical bar vertical bar in R-n, and set U(a)f(X) := vertical bar X vertical bar(a) f (X/vertical bar X vertical bar), for all X is an element of (B) over bar backslash{0}, for all f : partial derivative B -> R. Let a is an element of R, s > 0, 1 <= p < infinity and n >= 2 be such that (s - a) p < n. Then F vertical bar -> U(a)f is a bounded linear operator from W-s,W-p (partial derivative B) into W-s,W-p (B).
引用
收藏
页码:707 / 714
页数:8
相关论文
共 50 条
  • [21] Embeddings of the fractional Sobolev spaces on metric-measure spaces
    Gorka, Przemyslaw
    Slabuszewski, Artur
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [22] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [23] An embedding theorem for anisotropic fractional Sobolev spaces
    Xu, Chengmeng
    Sun, Wenchang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (04)
  • [24] Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians
    Kaufmann, Uriel
    Rossi, Julio D.
    Vidal, Raul
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (76) : 1 - 10
  • [25] Embedding of fractional Sobolev spaces is equivalent to regularity of the measure
    Gorka, Przemyslaw
    Slabuszewski, Artur
    STUDIA MATHEMATICA, 2023, 268 (03) : 333 - 344
  • [26] Fractional Sobolev spaces from a complex analytic viewpoint
    Yao, Xiao
    Zhang, Zhenqiu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [27] Fractional differential operators, fractional Sobolev spaces and fractional variation on homogeneous Carnot groups
    Zhang, Tong
    Zhu, Jie-Xiang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) : 1786 - 1841
  • [28] Estimates on translations and Taylor expansions in fractional Sobolev spaces
    del Teso, Felix
    Gomez-Castro, David
    Vazquez, Juan Luis
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 200 (200)
  • [29] The classical obstacle problem with coefficients in fractional Sobolev spaces
    Francesco Geraci
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 549 - 581
  • [30] Sobolev spaces associated to singular and fractional Radon transforms
    Street, Brian
    REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (02) : 633 - 748