High Spatial Resolution Simulation of Sunshine Duration over the Complex Terrain of Ghana

被引:8
作者
Adamu, Mustapha [1 ]
Qiu, Xinfa [2 ]
Shi, Guoping [3 ]
Nooni, Isaac Kwesi [3 ]
Wang, Dandan [2 ]
Zhu, Xiaochen [2 ]
Hagan, Daniel Fiifi T. [3 ]
Sian, Kenny T. C. Lim Kam [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Atmospher Sci, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Coll Geog Sci, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
sunshine duration; sunshine percentage; complex terrain; remote-sensing; Digital Elevation Model (DEM); Ghana; GLOBAL SOLAR-RADIATION; SUPPORT VECTOR MACHINE; EMPIRICAL-MODELS; INTERPOLATION; TEMPERATURE; IMPROVEMENTS; IRRADIATION; REGRESSION;
D O I
10.3390/s19071743
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we propose a remote sensing model based on a 1 x 1 km spatial resolution to estimate the spatio-temporal distribution of sunshine percentage (SSP) and sunshine duration (SD), taking into account terrain features and atmospheric factors. To account for the influence of topography and atmospheric conditions in the model, a digital elevation model (DEM) and cloud products from the moderate-resolution imaging spectroradiometer (MODIS) for 2010 were incorporated into the model and subsequently validated against in situ observation data. The annual and monthly average daily total SSP and SD have been estimated based on the proposed model. The error analysis results indicate that the proposed modelled SD is in good agreement with ground-based observations. The model performance is evaluated against two classical interpolation techniques (kriging and inverse distance weighting (IDW)) based on the mean absolute error (MAE), the mean relative error (MRE) and the root-mean-square error (RMSE). The results reveal that the SD obtained from the proposed model performs better than those obtained from the two classical interpolators. This results indicate that the proposed model can reliably reflect the contribution of terrain and cloud cover in SD estimation in Ghana, and the model performance is expected to perform well in similar environmental conditions.
引用
收藏
页数:13
相关论文
共 49 条
[1]  
Akinoglu B. G., 1991, Renewable Energy, V1, P479, DOI 10.1016/0960-1481(91)90061-S
[2]   Sunshine-based global radiation models: A review and case study [J].
Al-Mostafa, Z. A. ;
Maghrabi, A. H. ;
Al-Shehri, S. M. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 84 :209-216
[3]   Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada [J].
Aladenola, Olanike O. ;
Madramootoo, Chandra A. .
THEORETICAL AND APPLIED CLIMATOLOGY, 2014, 118 (03) :377-385
[4]   Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain) [J].
Almorox, J. ;
Hontoria, C. ;
Benito, M. .
APPLIED ENERGY, 2011, 88 (05) :1703-1709
[5]  
Ambreen R., 2015, J GEOGRAP INFOR SYST, V7, P65, DOI [10.4236/jgis.2015.71006, DOI 10.4236/JGIS.2015.71006]
[6]  
[Anonymous], 2012, Res J. Chem Sci.
[7]  
Arku F.S., 2011, J AFR STUD DEV, V3, P45
[8]  
ARMSTRONG MP, 1994, PHOTOGRAMM ENG REM S, V60, P1097
[9]   A review of Ghana's energy sector national energy statistics and policy framework [J].
Asumadu-Sarkodie, Samuel ;
Owusu, Phebe Asantewaa .
COGENT ENGINEERING, 2016, 3 (01)
[10]  
Baboo C.S.S., 2014, GLOB J COMPUT SCI TE, V14, P35