Shadowing breakdown and large errors in dynamical simulations of physical systems

被引:42
|
作者
Sauer, TD [1 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevE.65.036220
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Simulations play a crucial role in the modern study of physical systems. A major open question for long dynamical simulations of physical processes is the role of discretization and truncation errors in the outcome. A general mechanism is described that can cause extremely small noise inputs to result in errors in simulation statistics that are several orders of magnitude larger. A scaling law for the size of such errors in terms of the noise level and properties of the dynamics is given. This result brings into question trajectory averages that are computed for systems with particular dynamical behaviors, in particular, systems that exhibit fluctuating Lyapunov exponents or unstable dimension variability.
引用
收藏
页码:1 / 036220
页数:5
相关论文
共 50 条
  • [11] Recurrence, rigidity, and shadowing in dynamical systems
    Meddaugh, Jonathan
    FUNDAMENTA MATHEMATICAE, 2023, 260 (03) : 263 - 279
  • [12] Some properties of dynamical systems having shadowing
    Askri, Ghassen
    TOPOLOGY AND ITS APPLICATIONS, 2023, 339
  • [13] Dynamical Systems with Lipschitz Inverse Shadowing Properties
    Pilyugin, S. Yu.
    Vol'fson, G. I.
    Todorov, D. I.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2011, 44 (03) : 208 - 213
  • [14] VARIOUS INVERSE SHADOWING IN LINEAR DYNAMICAL SYSTEMS
    Choi, Taeyoung
    Lee, Keonhee
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 21 (03): : 515 - 526
  • [15] Generic points for dynamical systems with average shadowing
    Kwietniak, Dominik
    Lacka, Martha
    Oprocha, Piotr
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (04): : 625 - 648
  • [16] Generic points for dynamical systems with average shadowing
    Dominik Kwietniak
    Martha Łącka
    Piotr Oprocha
    Monatshefte für Mathematik, 2017, 183 : 625 - 648
  • [17] SHADOWING AS A STRUCTURAL PROPERTY OF THE SPACE OF DYNAMICAL SYSTEMS
    Meddaugh, Jonathan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (05) : 2439 - 2451
  • [18] Average Shadowing Property and Asymptotic Average Shadowing Property of Linear Dynamical Systems
    Jiao, Lixin
    Wang, Lidong
    Li, Fengquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (12):
  • [19] Large-scale simulations of complex physical systems
    Belic, A.
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 76 - 79
  • [20] CYCLES OF SPATIAL DISCRETIZATIONS OF SHADOWING DYNAMICAL-SYSTEMS
    DIAMOND, P
    KLOEDEN, P
    POKROVSKII, A
    MATHEMATISCHE NACHRICHTEN, 1995, 171 : 95 - 110