Regional controllability of semilinear degenerate parabolic equations in bounded domains

被引:46
作者
Cannarsa, P.
Fragnelli, G.
Vancostenoble, J.
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Toulouse 3, CNRS, UMR 5640, Lab MIP, F-31062 Toulouse 4, France
关键词
null controllability; semilinear parabolic equations; degenerate equations;
D O I
10.1016/j.jmaa.2005.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study controllability properties of semilinear degenerate parabolic equations. Due to degeneracy, classical null controllability results do not hold in general. Thus we investigate results of 'regional null controllability', showing that we can drive the solution to rest at time T on a subset of the space domain, contained in the set where the equation is nondegenerate. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:804 / 818
页数:15
相关论文
共 12 条
[1]   Null controllability for the dissipative semilinear heat equation [J].
Anita, S ;
Tataru, D .
APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 46 (2-3) :97-105
[2]  
[Anonymous], 1983, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-5561-1
[3]   Exact controllability of the superlinear heat equation [J].
Barbu, V .
APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 42 (01) :73-89
[4]   Degenerate self-adjoint evolution equations on the unit interval [J].
Campiti, M ;
Metafune, G ;
Pallara, D .
SEMIGROUP FORUM, 1998, 57 (01) :1-36
[5]   Persistent regional null controllability for a class of degenerate parabolic equations [J].
Cannarsa, P ;
Martinez, P ;
Vancostenoble, J .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (04) :607-635
[6]  
CANNARSA P, UNPUB CONTROLLABILIT
[7]  
ENGEL KJ, 2000, GRAD TEXT M, V194, pR17
[8]   Null and approximate controllability for weakly blowing up semilinear heat equations [J].
Fernández-Cara, E ;
Zuazua, E .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (05) :583-616
[9]  
Fursikov A.V., 1996, Lect. Notes Ser., Seoul, V34
[10]   EXACT CONTROL OF THE HEAT-EQUATION [J].
LEBEAU, G ;
ROBBIANO, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (1-2) :335-356