Striatal Parvalbuminergic Neurons Are Lost in Huntington's Disease: Implications for Dystonia

被引:71
作者
Reiner, Anton [1 ]
Shelby, Evan [1 ]
Wang, Hongbing [1 ]
DeMarch, Zena [1 ]
Deng, Yunping [1 ]
Guley, Natalie Hart [1 ]
Hogg, Virginia [2 ,3 ]
Roxburgh, Richard [2 ,4 ]
Tippett, Lynette J. [2 ,3 ]
Waldvogel, Henry J. [2 ,5 ]
Faull, Richard L. M. [2 ,5 ]
机构
[1] Univ Tennessee, Ctr Hlth Sci, Dept Anat & Neurobiol, Memphis, TN 38163 USA
[2] Univ Auckland, Ctr Brain Res, Auckland 1, New Zealand
[3] Univ Auckland, Dept Psychol, Auckland, New Zealand
[4] Auckland City Hosp, Dept Neurol, Auckland, New Zealand
[5] Univ Auckland, Dept Anat Radiol, Auckland 1, New Zealand
关键词
Huntington's disease; dystonia; striatum; parvalbuminergic interneurons; FAST-SPIKING INTERNEURONS; BASAL GANGLIA OUTPUT; PROJECTION NEURONS; GABAERGIC INTERNEURONS; IMMUNOREACTIVE NEURONS; GLOBUS-PALLIDUS; TARGETED EXPRESSION; FUNCTIONAL-ANATOMY; DIFFERENTIAL LOSS; CORTICAL INPUT;
D O I
10.1002/mds.25624
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Although dystonia represents a major source of motor disability in Huntington's disease (HD), its pathophysiology remains unknown. Because recent animal studies indicate that loss of parvalbuminergic (PARV+) striatal interneurons can cause dystonia, we investigated if loss of PARV+ striatal interneurons occurs during human HD progression, and thus might contribute to dystonia in HD. We used immunolabeling to detect PARV+ interneurons in fixed sections, and corrected for disease-related striatal atrophy by expressing PARV+ interneuron counts in ratio to interneurons co-containing somatostatin and neuropeptide Y (whose numbers are unaffected in HD). At all symptomatic HD grades, PARV+ interneurons were reduced to less than 26% of normal abundance in rostral caudate. In putamen rostral to the level of globus pallidus, loss of PARV+ interneurons was more gradual, not dropping off to less than 20% of control until grade 2. Loss of PARV+ interneurons was even more gradual in motor putamen at globus pallidus levels, with no loss at grade 1, and steady grade-wise decline thereafter. A large decrease in striatal PARV+ interneurons, thus, occurs in HD with advancing disease grade, with regional variation in the loss per grade. Given the findings of animal studies and the grade-wise loss of PARV+ striatal interneurons in motor striatum in parallel with the grade-wise appearance and worsening of dystonia, our results raise the possibility that loss of PARV+ striatal interneurons is a contributor to dystonia in HD.
引用
收藏
页码:1691 / 1699
页数:9
相关论文
共 78 条
[1]   Differential influence of BDNF and NT3 on the expression of calcium binding proteins and neuropeptide Y in vivo [J].
Agerman, K ;
Ernfors, P .
NEUROREPORT, 2003, 14 (17) :2183-2187
[2]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[3]   STRIATAL AND NIGRAL NEURON SUBPOPULATIONS IN RIGID HUNTINGTONS-DISEASE - IMPLICATIONS FOR THE FUNCTIONAL-ANATOMY OF CHOREA AND RIGIDITY-AKINESIA [J].
ALBIN, RL ;
REINER, A ;
ANDERSON, KD ;
PENNEY, JB ;
YOUNG, AB .
ANNALS OF NEUROLOGY, 1990, 27 (04) :357-365
[4]   GENETICS AND MOLECULAR-BIOLOGY OF HUNTINGTONS-DISEASE [J].
ALBIN, RL ;
TAGLE, DA .
TRENDS IN NEUROSCIENCES, 1995, 18 (01) :11-14
[5]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[6]   Spontaneous remission of paroxysmal dystonia coincides with normalization of entopeduncular activity in dtsz mutants [J].
Bennay, M ;
Gernert, M ;
Richter, A .
JOURNAL OF NEUROSCIENCE, 2001, 21 (13)
[7]   Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance [J].
Berke, Joshua D. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (40) :10075-10080
[8]   Mutations in TITF-1 are associated with benign hereditary chorea [J].
Breedveld, GJ ;
van Dongen, JWF ;
Danesino, C ;
Guala, A ;
Percy, AK ;
Dure, LS ;
Harper, P ;
Lazarou, LP ;
van der Linde, H ;
Joosse, M ;
Grüters, A ;
MacDonald, ME ;
de Vries, BBA ;
Arts, WFM ;
Oostra, BA ;
Krude, H ;
Heutink, P .
HUMAN MOLECULAR GENETICS, 2002, 11 (08) :971-979
[9]   CALBINDIN-D-28K AND PARVALBUMIN IN THE RAT NERVOUS-SYSTEM [J].
CELIO, MR .
NEUROSCIENCE, 1990, 35 (02) :375-475
[10]   PRIMATE MODELS OF MOVEMENT-DISORDERS OF BASAL GANGLIA ORIGIN [J].
DELONG, MR .
TRENDS IN NEUROSCIENCES, 1990, 13 (07) :281-285